Single-chain nanoparticles (SCNPs) are a new class of bio- and soft-matter polymeric objects in which a fraction of the monomers are able to form equivalently intra- or interpolymer bonds. Here we numerically show that a fully entropic gas-liquid phase separation can take place in SCNP systems. Control over the discontinuous (first-order) change-from a phase of independent diluted (fully-bonded) polymers to a phase in which polymers entropically bind to each other to form a (fully-bonded) polymer network-can be achieved by a judicious design of the patterns of reactive monomers along the polymer chain. Such a sensitivity arises from a delicate balance between the distinct entropic contributions controlling the binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.047801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!