Stability and Rupture of an Ultrathin Ionic Wire.

Phys Rev Lett

Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, 13083-970 Campinas, São Paulo, Brazil.

Published: July 2022

Using a combination of in situ high-resolution transmission electron microscopy and density functional theory, we report the formation and rupture of ZrO_{2} atomic ionic wires. Near rupture, under tensile stress, the system favors the spontaneous formation of oxygen vacancies, a critical step in the formation of the monatomic bridge. In this length scale, vacancies provide ductilelike behavior, an unexpected mechanical behavior for ionic systems. Our results add an ionic compound to the very selective list of materials that can form monatomic wires and they contribute to the fundamental understanding of the mechanical properties of ceramic materials at the nanoscale.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.046101DOI Listing

Publication Analysis

Top Keywords

stability rupture
4
rupture ultrathin
4
ionic
4
ultrathin ionic
4
ionic wire
4
wire combination
4
combination in situ
4
in situ high-resolution
4
high-resolution transmission
4
transmission electron
4

Similar Publications

Background: Classical-like Ehlers Danlos Syndrome type 1 (clEDS1) is a very rare form of Ehlers Danlos Syndrome (EDS) caused by tenascin-X (TNX) deficiency, with only 56 individuals reported. TNX is an extracellular matrix protein needed for collagen stability. Previous publications propose that individuals with clEDS1 might be at risk for gastrointestinal (GI) tract perforations and/or tracheal ruptures.

View Article and Find Full Text PDF

Supramolecular Ionic Gels for Stretchable Electronics and Future Directions.

ACS Mater Au

January 2025

Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.

Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.

View Article and Find Full Text PDF

Introduction: The peripheral radioulnar articulation and the bony radioulnar articulation make up the distal radioulnar joint (DRUJ), a diarthrodial trochoid synovial joint stabilizers for soft tissues. Of the DRUJ's stability, only around 20% may be attributed to the bony articulation. Treatment for DRUJ injuries resulting from a solely ligamentous rupture varies and is subject to debate.

View Article and Find Full Text PDF

The number of revision anterior cruciate ligament reconstruction (RACLR) procedures is increasing in proportion to the increase in the number of anterior cruciate ligament reconstruction (ACLR) procedures. Although approximately 50-75% of these procedures can be performed in a single-stage procedure, not all of them can. The choice of graft may influence the results of RACLR.

View Article and Find Full Text PDF

Creep Resistance and Microstructure Evolution in P23/P91 Welds.

Materials (Basel)

January 2025

Faculty of Materials Science and Technology, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic.

This paper summarizes the results of investigations into heterogeneous P23/P91 welds after long-term creep exposure at temperatures of 500, 550 and 600 °C. Two variants of welds were studied: In Weld A, the filler material corresponded to P91 steel, while in Weld B, the chemical composition of the consumable material matched P23 steel. The creep rupture strength values of Weld A exceeded those of Weld B at all testing temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!