Topological insulators host topology-linked boundary states, whose spin and charge degrees of freedom could be exploited to design topological devices with enhanced functionality. We experimentally observe that dissipationless chiral edge states in a spin-orbit coupled anomalous Floquet topological phase exhibit topological spin texture on boundaries, realized via a two-dimensional quantum walk. Our experiment shows that, for a walker traveling around a closed loop along the boundary in real space, its spin evolves and winds through a great circle on the Bloch sphere, which implies that edge-spin texture has nontrivial winding. This topological spin winding is protected by a chiral-like symmetry emerging for the low-energy Hamiltonian. Our experiment confirms that two-dimensional anomalous Floquet topological systems exhibit topological spin texture on the boundary, which could inspire novel topology-based spintronic phenomena and devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.046401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!