A ternary strategy is viable to minimize the trade-off between short-circuit current density () and open-circuit voltage () in organic solar cells. Generally, the ternary OSCs can achieve a higher PCE than the binary counterparts by subtly utilizing the particular photoelectric properties of the third material. In this regard, we choose BTP-CC with a higher-lying LUMO level based on a fused TPBT (dithienothiophen[3.2-]-pyrrolobenzothiadiazole) central framework and CC (2-(6-oxo-5,6-dihydro-4-cyclopenta []thiophen-4-ylidene) malononitrile) flanking groups as the third component to broaden the light-absorption spectrum, regulate the bulk heterojunction (BHJ) morphology, improve the , and reduce the charge recombination in OSCs. In addition, BTP-CC demonstrates intense intermolecular energy transfer to Y6 by fluorescence resonance energy transfer (FRET) pathway, which is due to the photoluminescence (PL) spectrum of BTP-CC covering the absorption region of Y6. The PM6:Y6:BTP-CC based ternary OSC achieves a champion PCE of 17.55%. Further investigation indicates that introduction of BTP-CC could reduce the trap states in OSCs, leading to an increased charge carrier density. Moreover, the incorporation of BTP-CC could improve the device stability. These results demonstrated that BTP-CC is important in improving the photovoltaic performance of ternary OSCs, and this work also provides a guideline for constructing ideal ternary OSCs in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c07883 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!