Excitatory and inhibitory ionotropic receptors are the major gates of ion fluxes that determine the activity of synapses during physiological neuronal communication. Therefore, alterations in their abundance, function, and relationships with other synaptic elements have been observed as a major correlate of alterations in brain function and cognitive impairment in neurodegenerative diseases and mental disorders. Understanding how the function of excitatory and inhibitory synaptic receptors is altered by disease is of critical importance for the development of effective therapies. To gain disease-relevant information, it is important to record the electrical activity of neurotransmitter receptors that remain functional in the diseased human brain. So far this is the closest approach to assess pathological alterations in receptors' function. In this work, a methodology is presented to perform microtransplantation of synaptic membranes, which consists of reactivating synaptic membranes from snap frozen human brain tissue containing human receptors, by its injection and posterior fusion into the membrane of Xenopus laevis oocytes. The protocol also provides the methodological strategy to obtain consistent and reliable responses of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and γ-aminobutyric acid (GABA) receptors, as well as novel detailed methods that are used for normalization and rigorous data analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10729793PMC
http://dx.doi.org/10.3791/64024DOI Listing

Publication Analysis

Top Keywords

synaptic membranes
12
microtransplantation synaptic
8
synaptic receptors
8
excitatory inhibitory
8
human brain
8
receptors
6
synaptic
5
membranes reactivate
4
human
4
reactivate human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!