Certain cell and tissue functions operate within the dynamic time scale of minutes to hours that are poorly resolved by conventional culture systems. This work has developed a low-cost perfusion bioreactor system that allows culture medium to be continuously perfused into a cell culture module and fractionated in a downstream module to measure dynamics on this scale. The system is constructed almost entirely from commercially available parts and can be parallelized to conduct independent experiments in conventional multi-well cell culture plates simultaneously. This video article demonstrates how to assemble the base setup, which requires only a single multichannel syringe pump and a modified fraction collector to perfuse up to six cultures in parallel. Useful variants on the modular design are also presented that allow for controlled stimulation dynamics, such as solute pulses or pharmacokinetic-like profiles. Importantly, as solute signals travel through the system, they are distorted due to solute dispersion. Furthermore, a method for measuring the residence time distributions (RTDs) of the components of the perfusion setup with a tracer using MATLAB is described. RTDs are useful to calculate how solute signals are distorted by the flow in the multi-compartment system. This system is highly robust and reproducible, so basic researchers can easily adopt it without the need for specialized fabrication facilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631111PMC
http://dx.doi.org/10.3791/63935DOI Listing

Publication Analysis

Top Keywords

cell culture
12
perfusion bioreactor
8
solute signals
8
culture
5
system
5
multi-stream perfusion
4
bioreactor integrated
4
integrated outlet
4
outlet fractionation
4
fractionation dynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!