A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Halocyclopentadienes: An Emerging Class of Toxic DBPs in Chlor(am)inated Drinking Water. | LitMetric

Halocyclopentadienes: An Emerging Class of Toxic DBPs in Chlor(am)inated Drinking Water.

Environ Sci Technol

Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, South Carolina, United States.

Published: August 2022

Although >700 disinfection by-products (DBPs) have been identified to date, most DBPs in drinking water are still unknown. Identifying unknown DBPs is an important step for improving drinking water quality because known DBPs do not fully account for the adverse health effects noted in epidemiologic studies. Using gas chromatography high-resolution mass spectrometry, six chloro- and bromo-halocyclopentadienes (HCPDs) were identified in chlorinated and chloraminated drinking water non-target analysis; five HCPDs are reported for the first time as new alicyclic DBPs. Formation pathways were also proposed. Simulated disinfection experiments with Suwannee River natural organic matter (NOM) confirm that NOM is a precursor for these new DBPs. Further, HCPDs are more abundant in chlorinated drinking water (real and simulated) when compared to chloraminated drinking water due to the higher reactivity of chlorine. Of these new DBPs, 1,2,3,4,5,5-hexachloro-1,3-cyclopentadiene is approximately 100,000× more toxic () than regulated trihalomethanes (THMs) and haloacetic acids (HAAs) and 20-2000× more toxic than halobenzoquinones, halophenols, and halogenated pyridinols using the available median lethal dose (LD) and concentration for 50% of maximal effective concentration (EC) of DBPs to aquatic organisms. The predicted bioconcentration factors of these HCPDs range from 384 to 3980, which are 2-3 orders of magnitude higher than those for regulated and priority DBPs (including THMs, HAAs, halobenzoquinones, haloacetonitriles, haloacetamides, halonitromethanes, haloacetaldehydes, iodo-THMs, and iodo-HAAs). Thus, HCPDs are an important emerging class of DBPs that should be studied to better understand their impact on drinking water quality and long-term human health exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c02490DOI Listing

Publication Analysis

Top Keywords

drinking water
28
chloraminated drinking
12
dbps
11
emerging class
8
water quality
8
drinking
7
water
7
hcpds
5
halocyclopentadienes emerging
4
class toxic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!