Background: Acute pulmonary embolism (APE) is a major cause of acute morbidity and mortality. APE results in long-term morbidity in up to 50% of survivors, known as post-pulmonary embolism (post-PE) syndrome.  APE can be classified according to the short-term (30-day) risk of mortality, based on a variety of clinical, imaging and laboratory findings. Most mortality and morbidity is concentrated in high-risk (massive) and intermediate-risk (submassive) APE. The first-line treatment for APE is systemic anticoagulation.  High-risk (massive) APE accounts for less than 10% of APE cases and is a life-threatening medical emergency, requiring immediate reperfusion treatment to prevent death. Systemic thrombolysis is the recommended treatment for high-risk (massive) APE. However, only a minority of the people affected receive systemic thrombolysis, due to comorbidities or the 10% risk of major haemorrhagic side effects. Of those who do receive systemic thrombolysis, 8% do not respond in a timely manner. Surgical pulmonary embolectomy is an alternative reperfusion treatment, but is not widely available.  Intermediate-risk (submassive) APE represents 45% to 65% of APE cases, with a short-term mortality rate of around 3%. Systemic thrombolysis is not recommended for this group, as major haemorrhagic complications outweigh the benefit. However, the people at higher risk within this group have a short-term mortality of around 12%, suggesting that anticoagulation alone is not an adequate treatment. Identification and more aggressive treatment of people at intermediate to high risk, who have a more favourable risk profile for reperfusion treatments, could reduce short-term mortality and potentially reduce post-PE syndrome. Catheter-directed treatments (catheter-directed thrombolysis and catheter embolectomy) are minimally invasive reperfusion treatments for high- and intermediate-risk APE. Catheter-directed treatments can be used either as the primary treatment or as salvage treatment after failure of systemic thrombolysis. Catheter-directed thrombolysis administers 10% to 20% of the systemic thrombolysis dose directly into the thrombus in the lungs, potentially reducing the risks of haemorrhagic side effects. Catheter embolectomy mechanically removes the thrombus without the need for thrombolysis, and may be useful for people with contraindications for thrombolysis.  Currently, the benefits of catheter-based APE treatments compared with existing medical and surgical treatment are unclear despite increasing adoption of catheter treatments by PE response teams. This review examines the evidence for the use of catheter-directed treatments in high- and intermediate-risk APE. This evidence could help guide the optimal treatment strategy for people affected by this common and life-threatening condition.

Objectives: To assess the effects of catheter-directed therapies versus alternative treatments for high-risk (massive) and intermediate-risk (submassive) APE.

Search Methods: We used standard, extensive Cochrane search methods. The latest search was 15 March 2022.

Selection Criteria: We included randomised controlled trials (RCTs) of catheter-directed therapies for the treatment of high-risk (massive) and intermediate-risk (submassive) APE. We excluded catheter-directed treatments for non-PE. We applied no restrictions on participant age or on the date, language or publication status of RCTs.

Data Collection And Analysis: We used standard Cochrane methods. The main outcomes were all-cause mortality, treatment-associated major and minor haemorrhage rates based on two established clinical definitions, recurrent APE requiring retreatment or change to a different APE treatment, length of hospital stay, and quality of life. We used GRADE to assess certainty of evidence for each outcome.

Main Results: We identified one RCT (59 participants) of (ultrasound-augmented) catheter-directed thrombolysis for intermediate-risk (submassive) APE. We found no trials of any catheter-directed treatments (thrombectomy or thrombolysis) in people with high-risk (massive) APE or of catheter-based embolectomy in people with intermediate-risk (submassive) APE. The included trial compared ultrasound-augmented catheter-directed thrombolysis with alteplase and systemic heparinisation versus systemic heparinisation alone. In the treatment group, each participant received an infusion of alteplase 10 mg or 20 mg over 15 hours. We identified a high risk of selection and performance bias, low risk of detection and reporting bias, and unclear risk of attrition and other bias. Certainty of evidence was very low because of risk of bias and imprecision.  By 90 days, there was no clear difference in all-cause mortality between the treatment group and control group. A single death occurred in the control group at 20 days after randomisation, but it was unrelated to the treatment or to APE (odds ratio (OR) 0.31, 95% confidence interval (CI) 0.01 to 7.96; 59 participants). By 90 days, there were no episodes of treatment-associated major haemorrhage in either the treatment or control group. There was no clear difference in treatment-associated minor haemorrhage between the treatment and control group by 90 days (OR 3.11, 95% CI 0.30 to 31.79; 59 participants). By 90 days, there were no episodes of recurrent APE requiring retreatment or change to a different APE treatment in the treatment or control group. There was no clear difference in the length of mean total hospital stay between the treatment and control groups. Mean stay was 8.9 (standard deviation (SD) 3.4) days in the treatment group versus 8.6 (SD 3.9) days in the control group (mean difference 0.30, 95% CI -1.57 to 2.17; 59 participants). The included trial did not investigate quality of life measures.  AUTHORS' CONCLUSIONS: There is a lack of evidence to support widespread adoption of catheter-based interventional therapies for APE. We identified one small trial showing no clear differences between ultrasound-augmented catheter-directed thrombolysis with alteplase plus systemic heparinisation versus systemic heparinisation alone in all-cause mortality, major and minor haemorrhage rates, recurrent APE and length of hospital stay. Quality of life was not assessed.  Multiple small retrospective case series, prospective patient registries and single-arm studies suggest potential benefits of catheter-based treatments, but they provide insufficient evidence to recommend this approach over other evidence-based treatments. Researchers should consider clinically relevant primary outcomes (e.g. mortality and exercise tolerance), rather than surrogate markers (e.g. right ventricular to left ventricular (RV:LV) ratio or thrombus burden), which have limited clinical utility. Trials must include a control group to determine if the effects are specific to the treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358724PMC
http://dx.doi.org/10.1002/14651858.CD013083.pub2DOI Listing

Publication Analysis

Top Keywords

control group
28
ape
24
high-risk massive
24
intermediate-risk submassive
24
systemic thrombolysis
24
treatment
23
submassive ape
20
catheter-directed treatments
20
catheter-directed thrombolysis
16
systemic heparinisation
16

Similar Publications

Encapsulation of Beauveria bassiana conidia as a new strategy for the biological control of Aedes aegypti larvae.

Sci Rep

December 2024

Laboratório de Entomologia e Fitopatologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, 28013-602, Brazil.

The virulence of encapsulated fungal conidia against Aedes aegypti larvae was investigated. Molecular studies confirmed that the fungal isolate used here was Beauveria bassiana. Different conidial concentrations were tested.

View Article and Find Full Text PDF

The European pond turtle (Emys orbicularis) is a wide-ranging, long-living freshwater species with low reproductive success, mainly due to high predation pressure. We studied how habitat variables and predator communities in near-natural marshes affect the survival of turtle eggs and hatchlings. We followed the survival of artificial turtle nests placed in marshes along Lake Balaton (Hungary) in May and June as well as hatchlings (dummies) exposed in September.

View Article and Find Full Text PDF

The aim of this experiment was to investigate the effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. The trial included four treatments: a control group (CK) without additives and experimental groups supplemented with 7% rumen fluid (R), 4% molasses (M), and 7% rumen fluid + 4% molasses (RM). 15 days and 60 days of ensiling.

View Article and Find Full Text PDF

While numerous studies have established correlations between parasite load and negative effects on their hosts, establishing causality is more challenging because parasites can directly compromise host condition and survival or simply opportunistically thrive on an already weakened host. Here, we evaluated whether Ixodes uriae, a widespread seabird tick, can cause a decrease in growth parameters (body mass, bill length and growth rates) and survival of chicks of a colonially seabird, the black-browed albatross (Thalassarche melanophris) breeding on New Island (West Falkland). To investigate this, we daily removed the ticks from 28 randomly selected chicks during their first 14 days of life (treated chicks) and compared their growth and survival with 49 chicks of a control group.

View Article and Find Full Text PDF

Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!