Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Social media data may be especially effective for studying diseases associated with high stigma, such as Alzheimer's disease (AD).
Objective: We primarily aimed to identify issues/challenges experienced by patients with AD using natural language processing (NLP) of social media posts.
Methods: We searched 130 public social media sources between January 1998 and December 2021 for AD stakeholder social media posts using NLP to identify issues/challenges experienced by patients with AD. Issues/challenges identified by ≥10% of any AD stakeholder type were described. Illustrative posts were selected for qualitative review. Secondarily, issues/challenges were organized into a conceptual AD identification framework (ADIF) and representation of ADIF categories within clinical instruments was assessed.
Results: We analyzed 1,859,077 social media posts from 30,341 AD stakeholders (21,011 caregivers; 7,440 clinicians; 1,890 patients). The most common issues/challenges were Worry/anxiety (34.2%), Pain (33%), Malaise (28.7%), Confusional state (27.1%), and Falls (23.9%). Patients reported a markedly higher volume of issues/challenges than other stakeholders. Patient posts reflected the broader scope of patient burden, caregiver posts captured both patient and caregiver burden, and clinician posts tended to be targeted. Less than 5% of the high frequency issues/challenges were in the "function and independence" and "social and relational well-being" categories of the ADIF, suggesting these issues/challenges may be difficult to capture. No single clinical instrument covered all ADIF categories; "social and relational well-being" was least represented.
Conclusion: NLP of AD stakeholder social media data revealed a broad spectrum of real-world insights regarding patient burden.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-220422 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!