A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The value of CT radiomics features to predict visceral pleural invasion in ≤3 cm peripheral type early non-small cell lung cancer. | LitMetric

AI Article Synopsis

  • The study aims to determine how effective CT-based radiomics features are in predicting visceral pleural invasion (VPI) in small peripheral early-stage non-small cell lung cancer (NSCLC).
  • Researchers analyzed 221 NSCLC cases, dividing them into training and validation datasets to create and assess prediction models based on various CT imaging features and clinical data.
  • Results showed that the joint prediction model, which combines both morphological and texture features from CT scans, had the highest predictive accuracy for VPI, with an area under the ROC curve of 0.894.

Article Abstract

Objective: To investigate predictive value of CT-based radiomics features on visceral pleural invasion (VPI) in ≤3.0 cm peripheral type early non-small cell lung cancer (NSCLC).

Methods: A total of 221 NSCLC cases were collected. Among them, 115 are VPI-positive and 106 are VPI-negative. Using a stratified random sampling method, 70% cases were assigned to training dataset (n = 155) and 30% cases (n = 66) were assigned to validation dataset. First, CT findings, imaging features, clinical data and pathological findings were retrospectively analyzed, the size, location and density characteristics of nodules and lymph node status, the relationship between lesions and pleura (RAP) were assessed, and their mean CT value and the shortest distance between lesions and pleura (DLP) were measured. Next, the minimum redundancy-maximum relevance (mRMR) and least absolute shrinkage and selection operator (LASSO) features were extracted from the imaging features. Then, CT imaging prediction model, texture feature prediction model and joint prediction model were built using multifactorial logistic regression analysis method, and the area under the ROC curve (AUC) was applied to evaluate model performance in predicting VPI.

Results: Mean diameter, density, fractal relationship with pleura, and presence of lymph node metastasis were all independent predictors of VPI. When applying to the validation dataset, the CT imaging model, texture feature model, and joint prediction model yielded AUC = 0.882, 0.824 and 0.894, respectively, indicating that AUC of the joint prediction model was the highest (p < 0.05).

Conclusion: The study demonstrates that the joint prediction model containing CT morphological features and texture features enables to predict the presence of VPI in early NSCLC preoperatively at the highest level.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-221220DOI Listing

Publication Analysis

Top Keywords

prediction model
20
joint prediction
12
radiomics features
8
visceral pleural
8
pleural invasion
8
peripheral type
8
type early
8
early non-small
8
non-small cell
8
cell lung
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!