The aim of the prosthetic devices is to replicate the able-bodied angle-torque profile of a healthy human during locomotion. A lightweight and energy-efficient ankle joint is able to lower the actuator peak power and/or energy consumption per gait cycle, while adequately fulfilling the profile matching constraints. This study presents the design optimization of the prosthetic ankle joint containing an elastic element and actuator coupled with a rigid triangular part. The dimensions of the ankle joint triangular part were optimized to minimize actuator peak power and maximize spring energy within its elastic limits. As a result of series simulation tests, at 1.1 and 1.6 m/s walking speeds, the simulation of dorsi/plantar flexion shows up to 78.8% and 66.98% reduction in motor peak power compared to a direct drive system, respectively. Low power ankle-prosthetic device that closely matches the angle-torque profile of a healthy human's ankle, is one of the key parameters for the cost-effectiveness of lower limb prostheses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10364942PMC
http://dx.doi.org/10.1177/00368504221117895DOI Listing

Publication Analysis

Top Keywords

peak power
16
ankle joint
12
design optimization
8
angle-torque profile
8
profile healthy
8
actuator peak
8
ankle
5
power
5
optimization powered
4
powered ankle
4

Similar Publications

Thermoelectric properties of undoped crystals of dibenzo[g,p]chrysene (DBC), deuterated DBC (DBC-d16), and 2,10-dimethyl-DBC (DBC-Me2) have been studied to obtain some insights into the relationship between the structural parameters of materials and the giant Seebeck effect. X-ray crystallography showed one-dimensional columnar packing with the interlayer distances (d) for DBC-d16, DBC, and DBC-Me2 were 3.78 Å, 3.

View Article and Find Full Text PDF

This study presents a novel optimization algorithm known as the Energy Valley Optimizer Approach (EVOA) designed to effectively develop six optimal adaptive fuzzy logic controllers (AFLCs) comprising 30 parameters for a grid-tied doubly fed induction generator (DFIG) utilized in wind power plants (WPP). The primary objective of implementing EVOA-based AFLCs is to maximize power extraction from the DFIG in wind energy applications while simultaneously improving dynamic response and minimizing errors during operation. The performance of the EVOA-based AFLCs is thoroughly investigated and benchmarked against alternative optimization techniques, specifically chaotic billiards optimization (C-BO), genetic algorithms (GA), and marine predator algorithm (MPA)-based optimal proportional-integral (PI) controllers.

View Article and Find Full Text PDF

Large-area radiation-modulated thermoelectric fabrics for high-performance thermal management and electricity generation.

Sci Adv

January 2025

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.

Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.

View Article and Find Full Text PDF

Low-temperature direct ammonia fuel cell (DAFC) stands out as a more secure technology than the hydrogen fuel cell system, while there is still a lack of elegant bottom-up synthesis procedures for efficient ammonia oxidation reaction (AOR) electrocatalysts. The widely accepted d-band center, even with consideration of the d-band width, usually fails to describe variations in AOR reactivity in many practical conditions, and a more accurate activity descriptor is necessary for a less empirical synthesis path. Herein, the upper d-band edge, ε, derived from the d-band model, is identified as an effective descriptor for accurately establishing the descriptor-activity relationship.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom.

Background: Frontotemporal dementia (FTD) and Progressive Supranuclear Palsy (PSP) have distinct molecular pathologies, with Tau and TDP43 aggregation, and distinct patterns of regional brain atrophy. However, they share the synaptotoxicity of protein aggregation, and neurotransmitter loss (including GABA), which contribute to clinical and neurophysiological similarities. Defining the relationships between synaptic loss, network physiology and cognition builds bridges between preclinical and clinical studies, and facilitates early phase trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!