E3 ubiquitin ligases determine the substrate specificity and catalyze the ubiquitination of lysine residues. HUWE1 is a catalytic HECT domain-containing giant E3 ligase that contains a substrate-binding ring structure, and mediates the ubiquitination of more than 40 diverse substrates. HUWE1 serves as a central node in cellular stress responses, cell growth and death, signal transduction, etc. The expanding atlas of HUWE1 substrates presents a major challenge for the potential therapeutic application of HUWE1 in a particular disease. In addition, HUWE1 has been demonstrated to play contradictory roles in certain aspects of tumor progression in either an oncogenic or a tumor-suppressive manner. We recently defined novel roles of HUWE1 in promoting the activation of multiple inflammasomes. Inflammasome activation-mediated immune responses might lead to multifunctional effects on tumor therapy, inflammation, and autoimmune diseases. In this review, we summarize the known substrates and pleiotropic functions of HUWE1 in different types of cells and models, including its involvement in development, cancer, neuronal disorder and infectious disease. We also discuss the advances in cryo-EM-structural analysis for a functional-mechanistic understanding of HUWE1 in modulating the multitudinous diverse substrates, and introduce the possibility of revisiting the comprehensive roles of HUWE1 in multiple aspects within one microenvironment, which will shed light on the potential therapeutic application of targeting giant E3 ligases like HUWE1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355080 | PMC |
http://dx.doi.org/10.3389/fcimb.2022.905906 | DOI Listing |
EMBO J
December 2024
CRBM, Univ. Montpellier, CNRS, Montpellier, France.
The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions.
View Article and Find Full Text PDFNat Commun
December 2024
Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Am J Med Genet A
December 2024
Medical and Laboratory Genetic Unit, Antonio Cardarelli Hospital, Naples, Italy.
FEBS Lett
November 2024
Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
HUWE1, a HECT E3 ligase, is critical for processes like protein degradation and tumor development. Contrary to previous findings which suggested minimal non-covalent interactions between the HUWE1 HECT domain and ubiquitin, we identified a non-covalent interaction between the HUWE1 HECT N-lobe and ubiquitin using NMR spectroscopy, revealing a conserved ubiquitin-binding mode shared across HECT E3 ligases. Molecular dynamics simulations not only confirmed the stability of this interaction but also uncovered conformational changes in key residues, which likely influence binding affinity.
View Article and Find Full Text PDFRheumatology (Oxford)
October 2024
Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!