Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection currently remains one of the biggest global challenges that can lead to acute respiratory distress syndrome (CARDS) in severe cases. In line with this, prior pulmonary tuberculosis (TB) is a risk factor for long-term respiratory impairment. Post-TB lung dysfunction often goes unrecognized, despite its relatively high prevalence and its association with reduced quality of life. In this study, we used a metabolomics analysis to identify potential biomarkers that aid in the prognosis of COVID-19 morbidity and mortality in post-TB infected patients. This analysis involved blood samples from 155 SARS-CoV-2 infected adults, of which 23 had a previous diagnosis of TB (post-TB), while 132 did not have a prior or current TB infection. Our analysis indicated that the vast majority (~92%) of post-TB individuals showed severe SARS-CoV-2 infection, required intensive oxygen support with a significantly high mortality rate (52.2%). Amongst individuals with severe COVID-19 symptoms, we report a significant decline in the levels of amino acids, notably the branched chains amino acids (BCAAs), more so in the post-TB cohort (FDR <= 0.05) in comparison to mild and asymptomatic cases. Indeed, we identified betaine and BCAAs as potential prognostic metabolic biomarkers of severity and mortality, respectively, in COVID-19 patients who have been exposed to TB. Moreover, we identified serum alanine as an important metabolite at the interface of severity and mortality. Hence, our data associated COVID-19 mortality and morbidity with a long-term metabolically driven consequence of TB infection. In summary, our study provides evidence for a higher mortality rate among COVID-19 infection patients who have history of prior TB infection diagnosis, which mandates validation in larger population cohorts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354137PMC
http://dx.doi.org/10.3389/fcimb.2022.929689DOI Listing

Publication Analysis

Top Keywords

acute respiratory
8
sars-cov-2 infection
8
individuals severe
8
amino acids
8
post-tb
5
identification prognostic
4
prognostic metabolomic
4
metabolomic biomarkers
4
biomarkers interface
4
interface mortality
4

Similar Publications

Background: This study investigated the impact of posaconazole (POSA) prophylaxis in COVID-19 patients with acute respiratory failure receiving systemic corticosteroids on the risk for the development of COVID-19-associated pulmonary aspergillosis (CAPA).

Methods: The primary aim of this prospective, multicentre, case-control study was to assess whether application of POSA prophylaxis in mechanically ventilated COVID-19 patients reduces the risk for CAPA development. All consecutive patients from centre 1 (cases) who received POSA prophylaxis as standard-of-care were matched to one subject from centre 2 and centre 3 who did not receive any antifungal prophylaxis, using propensity score matching for the following variables: (i) age, (ii) sex, (iii) treatment with tocilizumab and (iv) time at risk.

View Article and Find Full Text PDF

Background: Nonpharmaceutical interventions for coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2, during the pandemic altered the epidemiology of respiratory viruses. This study aimed to determine the changes in respiratory viruses among children hospitalized from 2018 to 2023.

Methods: Nasopharyngeal specimens were collected from children aged under 15 years with fever and/or respiratory symptoms admitted to a medical institution in Fukushima Prefecture between January 2018 and December 2023.

View Article and Find Full Text PDF

Resurgence of common respiratory viruses and mycoplasma pneumoniae after ending the zero-COVID policy in Shanghai.

Sci Rep

January 2025

Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.

China has adhered to policies of zero-COVID for almost three years since the outbreak of COVID-19, which has remarkably affected the circulation of respiratory pathogens. However, China has begun to end the zero-COVID policies in late 2022. Here, we reported a resurgence of common respiratory viruses and Mycoplasma pneumoniae with unique epidemiological characteristics among children after ending the zero-COVID policy in Shanghai, China, 2023.

View Article and Find Full Text PDF

A broadly neutralizing antibody against the SARS-CoV-2 Omicron sub-variants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5.

Signal Transduct Target Ther

January 2025

NHC Key Laboratory of Systems Biology of Pathogens, State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, and Center for Tuberculosis Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.

The global spread of Severe Acute Respiratory Syndrome Coronavirus 2. (SARS-CoV-2) and its variant strains, including Alpha, Beta, Gamma, Delta, and now Omicron, pose a significant challenge. With the constant evolution of the virus, Omicron and its subtypes BA.

View Article and Find Full Text PDF

Maximizing phonation: impact of inspiratory muscle strengthening on vocal durations and pitch range.

BMC Pulm Med

January 2025

Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Background: This study investigated the acute effects of inspiratory muscle warm-up (IWU) on vocal performance in singers. Proper vocal and respiratory warm-up can enhance vocal range, quality, and endurance. The aim was to determine whether IWU improves maximum phonation time and pitch range, contributing to better voice production efficiency (vocal efficiency) and reduced fatigue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!