[Purpose] Gait training that increases non-paretic step length in stroke patients increases the propulsive force of the paretic leg. However, it limits knee flexion during the swing phase of gait, and this may cause gait disturbances such as worsening of gait pattern and increased risk of falling. Therefore, this study aimed to investigate the effects of increasing non-paretic step length on the joint movement and muscle activity of a paretic lower limb during hemiparetic gait. [Participants and Methods] A total of 15 hemiparetic patients with chronic stroke were enrolled in this study. Spatiotemporal parameters, along with kinematic and electromyography data of their paretic lower limbs, were measured during a 10-m distance overground walking. Two walking conditions were assessed: normal (comfortable gait) and non-paretic-long (gait with increased non-paretic step length) conditions. [Results] Under the non-paretic-long condition, the trailing limb angle was larger than under the normal condition. However, no significant difference was observed in the knee flexion angle during the swing phase. [Conclusion] Increasing non-paretic step length during gait is unlikely to limit knee flexion during the swing phase and can safely improve the propulsive force of a paretic leg.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9345751 | PMC |
http://dx.doi.org/10.1589/jpts.34.590 | DOI Listing |
PLoS One
January 2025
Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
Background: Increasing one's walking speed is an important goal in post-stroke gait rehabilitation. Insufficient arm swing in people post-stroke might limit their ability to propel the body forward and increase walking speed.
Purpose: To investigate the speed-dependent changes (and their contributing factors) in the arm swing of persons post-stroke.
J Neuroeng Rehabil
December 2024
Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, 355 E Erie St, Chicago, IL, 60611, USA.
Background: Clinical gait analysis plays a pivotal role in diagnosing and treating walking impairments. Inertial measurement units (IMUs) offer a low-cost, portable, and practical alternative to traditional gait analysis equipment, making these techniques more accessible beyond specialized clinics. Previous work and algorithms developed for specific clinical populations, like in individuals with Parkinson's disease, often do not translate effectively to other groups, such as stroke survivors, who exhibit significant variability in their gait patterns.
View Article and Find Full Text PDFJ Neuroeng Rehabil
November 2024
Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, 100 Penn Street, Baltimore, MD, 21201, USA.
Exp Brain Res
December 2024
Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA.
Eur J Neurosci
September 2024
Legs and Walking Lab, Shirley Ryan AbilityLab, Chicago, IL, USA.
Motor interference, where new skill acquisition disrupts the performance of a previously learned skill, is a critical yet underexplored factor in gait rehabilitation post-stroke. This study investigates the interference effects of two different practice schedules, applying interleaved (ABA condition) and intermittent (A-A condition) pulling force to the pelvis during treadmill walking, on lateral pelvis shifting towards the paretic leg in individuals with stroke. Task A involved applying resistive pelvis force (pulling towards the non-paretic side), and Task B applied assistive force (pulling towards the paretic side) at the stance phase of the paretic leg during walking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!