The performance of recommender systems highly impacts both music streaming platform users and the artists providing music. As fairness is a fundamental value of human life, there is increasing pressure for these algorithmic decision-making processes to be fair as well. However, many factors make recommender systems prone to biases, resulting in unfair outcomes. Furthermore, several stakeholders are involved, who may all have distinct needs requiring different fairness considerations. While there is an increasing interest in research on recommender system fairness in general, the music domain has received relatively little attention. This mini review, therefore, outlines current literature on music recommender system fairness from the perspective of each relevant stakeholder and the stakeholders combined. For instance, various works address gender fairness: one line of research compares differences in recommendation quality across user gender groups, and another line focuses on the imbalanced representation of artist gender in the recommendations. In addition to gender, popularity bias is frequently addressed; yet, primarily from the user perspective and rarely addressing how it impacts the representation of artists. Overall, this narrative literature review shows that the large majority of works analyze the current situation of fairness in music recommender systems, whereas only a few works propose approaches to improve it. This is, thus, a promising direction for future research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353048 | PMC |
http://dx.doi.org/10.3389/fdata.2022.913608 | DOI Listing |
Brief Bioinform
November 2024
The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Smart New Town, Quzhou, Zhejiang Province, 324000, China.
The identification of potential effective drug candidates is a fundamental step in new drug discovery, with profound implications for pharmaceutical research and the healthcare sector. While many computational methods have been developed for such predictions and have yielded promising results, two challenges persist: (i) The cold start problem of new drugs, which increases the difficulty of prediction due to lack of historical data or prior knowledge. (ii) The vastness of the compound search space for potential drug candidates.
View Article and Find Full Text PDFJ Imaging
January 2025
Laboratory Health Systemic Process (P2S), UR4129, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France.
As technology develops, consumer behavior and how people search for what they want are constantly evolving. Online shopping has fundamentally changed the e-commerce industry. Although there are more products available than ever before, only a small portion of them are noticed; as a result, a few items gain disproportionate attention.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Institute of Computer Science, University of Rostock, 18051, Rostock, Germany.
Background: Interpretability is a topical question in recommender systems, especially in healthcare applications. An interpretable classifier quantifies the importance of each input feature for the predicted item-user association in a non-ambiguous fashion.
Results: We introduce the novel Joint Embedding Learning-classifier for improved Interpretability (JELI).
Neural Netw
January 2025
LISAC Laboratory, Department of Informatics, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, 1796 Fez-Atlas, Fez, 30000, Morocco. Electronic address:
Session-based recommendation systems (SBRS) are essential for enhancing the customer experience, improving sales and loyalty, and providing the possibility to discover products in dynamic and real-world scenarios without needing user history. Despite their importance, traditional or even current SBRS algorithms face limitations, notably the inability to capture complex item transitions within each session and the disregard for general patterns that can be derived from multiple sessions. This paper proposes a novel SBRS model, called Capsule GraphSAGE for Session-Based Recommendation (CapsGSR), that marries GraphSAGE's scalability and inductive learning capabilities with the Capsules network's abstraction levels by generating multiple integrations for each node from different perspectives.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
This research focused on the efficient collection of experimental metal-organic framework (MOF) data from scientific literature to address the challenges of accessing hard-to-find data and improving the quality of information available for machine learning studies in materials science. Utilizing a chain of advanced large language models (LLMs), we developed a systematic approach to extract and organize MOF data into a structured format. Our methodology successfully compiled information from more than 40,000 research articles, creating a comprehensive and ready-to-use data set.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!