Lilies are one of the most important ornamental flowers worldwide with approximately 100 wild species and numerous cultivars, but the phylogenetic relationships among wild species and their contributions to these cultivars are poorly resolved. We collected the major species and cultivars and assembled their plastome sequences. Our phylogenetic reconstruction using 114 plastid genomes, including 70 wild species representing all sections and 42 cultivars representing six hybrid divisions and two outgroups, uncovered well-supported genetic relationships within . The wild species were separated into two distinct groups (groups A and B) associated with geographical distribution, which further diversified into eight different clades that were phylogenetically well supported. Additional support was provided by the distributions of indels and single-nucleotide variants, which were consistent with the topology. The species of sections III, and 6a and 6b were the maternal donors for Oriental hybrids, Asiatic hybrids, Trumpet hybrids, and Longiflorum hybrids, respectively. The maternal donors of the OT hybrids originated from the two sections and 6a, and LA hybrids were derived from the two sections 6b and . Our study provides an important basis for clarifying the infrageneric classification and the maternal origin of cultivars in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355515PMC
http://dx.doi.org/10.3389/fpls.2022.865606DOI Listing

Publication Analysis

Top Keywords

wild species
20
maternal origin
8
origin cultivars
8
114 plastid
8
plastid genomes
8
relationships wild
8
maternal donors
8
species
7
cultivars
6
hybrids
6

Similar Publications

The Identification and Characterization of the Gene Family in Oliv. Heteromorphic Leaves Provide a Theoretical Basis for the Functional Study of .

Int J Mol Sci

December 2024

Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.

Oliv. typically has four kinds of heteromorphic leaves: linear (Li), lanceolate (La), ovate (Ov) and broad ovate (Bo). Heteromorphic leaves help adapt to extreme desert environments and further contribute to protection against land desertification in Northwest China.

View Article and Find Full Text PDF

The genus includes numerous species, both cultivated and wild, offering significant genetic variability and economic potential that are often overlooked. Due to their high variability and ecological plasticity, jujube species and genotypes can be utilized in marginal areas and on land where few plants could be efficiently exploited. This study investigated variations in morphological characteristics (qualitative and quantitative), bioactive content (e.

View Article and Find Full Text PDF

This ethnobotanical study examines the traditional knowledge and usage patterns of wild plants in the western Alps, specifically within the Ubaye and Bellino Valleys, through a comparative analysis of data collected from 1983 (published in 1990) to 2024. Our study aims to assess the change in plant usage, species diversity, and the changing roles of plants in local traditions in the western Alpine mountain ecosystems. While the 1983 survey documented medicinal uses centered around pastoralist practices, the 2024 data highlight a notable increase in the use of synanthropic plants, now utilized both medicinally and as food.

View Article and Find Full Text PDF

Overexpression of from Bunge Enhanced Drought and Salt Tolerance by Improving ROS-Scavenging Capability.

Plants (Basel)

January 2025

State Key Laboratory of Tree Genetics and Breeding, Experimental Center of Forestry in North China, National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing, Chinese Academy of Forestry, Beijing 100091, China.

() genes play a crucial role in the response to abiotic stress and are important target genes for research on plant stress tolerance mechanisms. Bunge is a promising candidate tree species for investigating the tolerance mechanism of woody plants against abiotic stress. In our previous study, was identified as being associated with seed drought tolerance.

View Article and Find Full Text PDF

The Tianshan wild fruit forest region is a vital repository of plant biodiversity, particularly rich in the unique genetic resources of endemic medicinal plants in this ecological niche. However, human activities such as unregulated mining and excessive grazing have led to a significant reduction in the diversity of these medicinal plants. This study represents the first application of DNA barcoding to 101 medicinal plants found in the Tianshan wild fruit forests, using three genetic loci along with morphological identification methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!