Canine parvovirus (CPV) and feline panleukopenia virus (FPV), now included in the unique species (CPPV1), have been circulating in dogs and cats for several decades and are considered the causes of clinically important diseases, especially in young animals. While genetic evidence of the circulation of parvoviruses in Egyptian domestic carnivores has been provided since 2016, to date, all available data are based on partial fragments of the VP2 gene. This study reports the molecular characterization of CPPV strains from Egypt based on the full VP2 gene. Overall, 196 blood samples were collected from dogs and cats presented at veterinary clinics for routine medical assessment in 2019 in Egypt. DNA extracts were screened and characterized by real-time PCR. Positive samples were amplified by conventional PCR and then were sequenced. Nucleotide and amino acid changes in the sequences were investigated and phylogeny was inferred. DNA was detected in 18 out of 96 dogs (18.8%) and 7 of 100 cats (7%). Phylogenetic analyses based on the full VP2 gene revealed that 9 sequenced strains clustered with different CPV clades (5 with 2c, 2 with 2a, 1 with 2b, and 1 with 2) and 1 strain with the FPV clade. All three CPV variants were detected in dog and cat populations with a predominance of CPV-2c strains (7 of 18, 38.9%) in dog samples, thus mirroring the circulation of this variant in African, European, and Asian countries. Deduced amino acid sequence alignment revealed the presence of the previously unreported unique mutations S542L, H543Q, Q549H, and N557T in the Egyptian CPV-2c strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9354892PMC
http://dx.doi.org/10.3389/fvets.2022.932247DOI Listing

Publication Analysis

Top Keywords

vp2 gene
12
molecular characterization
8
domestic carnivores
8
dogs cats
8
based full
8
full vp2
8
amino acid
8
cpv-2c strains
8
characterization circulating
4
circulating domestic
4

Similar Publications

Characterization, Quantification, and Molecular Identification of Co-Infection of Canine Parvovirus (CPV-2) Variants in Dogs Affected by Gastroenteritis in Ecuador During 2022-2023.

Vet Sci

January 2025

Facultad de Ciencias de La Salud, Carrera de Medicina Veterinaria, Universidad de Las Américas (UDLA), Antigua Vía a Nayón S/N, Quito EC 170124, Ecuador.

Canine parvovirus (CPV-2) is a highly contagious virus in canines, and it is mostly spread by touching infected feces. Dogs of all ages can catch it, but puppies are more likely to suffer from it. Severe signs include vomiting, diarrhea with blood, feeling tired, and not drinking enough water.

View Article and Find Full Text PDF

A developed TaqMan probe-based qPCR was used to quantify the distribution of AMDV in various tissues of infected mink and its prevalence in northern China.

Front Vet Sci

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.

Aleutian mink disease (mink plasmacytosis) is a severe immune complex-mediated condition caused by the Aleutian Mink Disease Virus (AMDV), the most significant pathogen affecting mink health in the industry. Several studies have shown that AMDV epidemics can result in millions to tens of millions of dollars in economic losses worldwide each year. In this study, we developed a TaqMan probe-based real-time PCR technology (TaqMan-qPCR) for the specific, sensitive, and reproducible detection and quantification of AMDV in mink tissues by the VP2 gene, achieving detection limits as low as 1.

View Article and Find Full Text PDF

Recombinant Marek's disease virus expressing VP1 and VP2 proteins provides robust immune protection against chicken infectious anemia virus.

Front Microbiol

January 2025

Avian Immunosuppressive Diseases Division, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

Chicken infectious anemia (CIA) is a highly contagious disease caused by the chicken infectious anemia virus (CIAV), and it poses a serious threat to the poultry industry. However, effective control measures and strategies have not been identified. In this study, a recombinant Marek's disease virus (rMDV) expressing the VP1 and VP2 proteins of CIAV was successfully constructed using CRISPR/Cas9, and a commercial Marek's disease virus (MDV) vaccine strain was used as the vector.

View Article and Find Full Text PDF

Background: Aleutian mink disease, mink viral enteritis and canine distemper are known as the three most serious diseases that cause great economic loss in the mink industry. In clinical practice, aleutian mink disease virus (AMDV), mink enteritis virus (MEV) and canine distemper virus (CDV) are common mixed infections, and they have similar clinical clinical signs, such as diarrhoea. Therefore, a rapid and accurate differential diagnosis method for use on mink ranches is essential for the control of these three pathogens.

View Article and Find Full Text PDF

Human bocavirus infections in paediatric patients in a tertiary care hospital in Kerala, India.

Arch Virol

January 2025

Molecular Bioassay Laboratory, Institute of Advanced Virology, Bio 360 Life Sciences Park, Thonnakkal, Thiruvananthapuram, Kerala, India.

Human bocaviruses (HBoVs) can cause respiratory illness in young children. Although the first HBoV infection in India was reported in 2010, very little information is available about its prevalence, clinical features, or geographic distribution in this country. This study was conducted using 136 respiratory samples from paediatric patients in a tertiary care hospital in Kerala, 21 of which tested positive for HBoV1 and were further characterized through VP1/VP2 gene sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!