The outbreak of coronavirus disease (COVID-19) has been a nightmare to citizens, hospitals, healthcare practitioners, and the economy in 2020. The overwhelming number of confirmed cases and suspected cases put forward an unprecedented challenge to the hospital's capacity of management and medical resource distribution. To reduce the possibility of cross-infection and attend a patient according to his severity level, expertly diagnosis and sophisticated medical examinations are often required but hard to fulfil during a pandemic. To facilitate the assessment of a patient's severity, this paper proposes a multi-modality feature learning and fusion model for end-to-end covid patient severity prediction using the blood test supported electronic medical record (EMR) and chest computerized tomography (CT) scan images. To evaluate a patient's severity by the co-occurrence of salient clinical features, the High-order Factorization Network (HoFN) is proposed to learn the impact of a set of clinical features without tedious feature engineering. On the other hand, an attention-based deep convolutional neural network (CNN) using pre-trained parameters are used to process the lung CT images. Finally, to achieve cohesion of cross-modality representation, we design a loss function to shift deep features of both-modality into the same feature space which improves the model's performance and robustness when one modality is absent. Experimental results demonstrate that the proposed multi-modality feature learning and fusion model achieves high performance in an authentic scenario.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280852 | PMC |
http://dx.doi.org/10.1109/TCSVT.2021.3063952 | DOI Listing |
Sci Rep
December 2024
School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China.
Multi-modal medical images are important in tumor lesion detection. However, the existing detection models only use single-modal to detect lesions, a multi-modal semantic correlation is not enough to consider and lacks ability to express the shape, size, and contrast degree features of lesions. A Cross Modal YOLOv5 model (CMYOLOv5) is proposed.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
December 2024
School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
Biomed Eng Online
December 2024
Department of Bioengineering, University of Louisville, Louisville, KY, USA.
Purpose: This study aims to accurately predict the effects of hormonal therapy on prostate cancer (PC) lesions by integrating multi-modality magnetic resonance imaging (MRI) and the clinical marker prostate-specific antigen (PSA). It addresses the limitations of Convolutional Neural Networks (CNNs) in capturing long-range spatial relations and the Vision Transformer (ViT)'s deficiency in localization information due to consecutive downsampling. The research question focuses on improving PC response prediction accuracy by combining both approaches.
View Article and Find Full Text PDFHealth Data Sci
December 2024
Second Affiliated Hospital School of Medicine, Hangzhou, China.
Proteins govern most biological functions essential for life, and achieving controllable protein editing has made great advances in probing natural systems, creating therapeutic conjugates, and generating novel protein constructs. Recently, machine learning-assisted protein editing (MLPE) has shown promise in accelerating optimization cycles and reducing experimental workloads. However, current methods struggle with the vast combinatorial space of potential protein edits and cannot explicitly conduct protein editing using biotext instructions, limiting their interactivity with human feedback.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand.
Spoofing attacks (or Presentation Attacks) are easily accessible to facial recognition systems, making the online financial system vulnerable. Thus, it is urgent to develop an anti-spoofing solution with superior generalization ability due to the high demand for spoofing attack detection. Although multi-modality methods such as combining depth images with RGB images and feature fusion methods could currently perform well with certain datasets, the cost of obtaining the depth information and physiological signals, especially that of the biological signal is relatively high.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!