The selective extraction and recovery of different lignocellulosic molecules of interest from forestry residues is increasing every day not only to satisfy the needs of driving a society toward more sustainable approaches and materials (rethinking waste as a valuable resource) but also because lignocellulosic molecules have several applications. For this purpose, the development of new sustainable and ecologically benign extraction approaches has grown significantly. Deep eutectic solvents (DESs) appear as a promising alternative for the processing and manipulation of biomass. In the present study, a DES formed using choline chloride and levulinic acid (ChCl:LA) was studied to fractionate lignocellulosic residues of acacia wood ( Link), an invasive species in Portugal. Different parameters, such as temperature and extraction time, were optimized to enhance the yield and purity of recovered cellulose and lignin fractions. DESs containing LA were found to be promising solvent systems, as the hydrogen bond donor was considered relevant in relation to lignin extraction and cellulose concentration. On the other hand, the increase in temperature and extraction time increases the amount of extracted material from biomass but affects the purity of lignin. The most promising DES system, ChCl:LA in a ratio of 1:3, was found to not significantly depolymerize the extracted lignin, which presented a similar molecular weight to a kraft lignin. Additionally, the P NMR results revealed that the extracted lignin has a high content of phenolic OH groups, which favor its reactivity. A mixture of ChCl:LA may be considered a fully renewable solvent, and the formed DES presents good potential to fractionate wood residues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352220PMC
http://dx.doi.org/10.1021/acsomega.1c07380DOI Listing

Publication Analysis

Top Keywords

acacia wood
8
deep eutectic
8
eutectic solvents
8
extraction recovery
8
lignocellulosic molecules
8
temperature extraction
8
extraction time
8
extracted lignin
8
extraction
6
lignin
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!