Ga-doped ZSM-5 zeolites were directly synthesized by a facile one-step hydrothermal method without organic templates and calcination and then investigated in the cyclohexene hydration reaction. The structure, component, textural properties, and acidity of the as-prepared samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), Brunauer-Emmett-Teller (BET), ammonia temperature-programmed desorption (NH-TPD), pyridine-chemisorbed IR (Py-IR), and Ga, Al, Si, and H magic-angle spinning (MAS) NMR techniques. The characterization results showed that the introduction of Ga atoms into the ZSM-5 zeolite framework is much easier than Al atoms and beneficial to promote the formation of small-sized crystals. The number of Brønsted acid sites of Ga-doped ZSM-5 samples obviously increased compared with Ga0-ZSM-5. Additionally, the highest cyclohexanol yield (10.1%) was achieved over the Ga3-ZSM-5 sample, while the cyclohexanol yield of the Ga0-ZSM-5 sample was 8.6%. This result indicated that the improved catalytic performance is related to its larger external surface area, smaller particle size, and more Brønsted acid sites derived from Si-OH-Al and Si-OH-Ga of Ga3-ZSM-5. Notably, the green route reduces harmful gas emission and provides a basis for doping other heteroatoms to regulate the catalytic performance of zeolites, especially in industrial production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352339 | PMC |
http://dx.doi.org/10.1021/acsomega.2c02031 | DOI Listing |
ACS Omega
August 2022
Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
Ga-doped ZSM-5 zeolites were directly synthesized by a facile one-step hydrothermal method without organic templates and calcination and then investigated in the cyclohexene hydration reaction. The structure, component, textural properties, and acidity of the as-prepared samples were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), Brunauer-Emmett-Teller (BET), ammonia temperature-programmed desorption (NH-TPD), pyridine-chemisorbed IR (Py-IR), and Ga, Al, Si, and H magic-angle spinning (MAS) NMR techniques. The characterization results showed that the introduction of Ga atoms into the ZSM-5 zeolite framework is much easier than Al atoms and beneficial to promote the formation of small-sized crystals.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2021
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China.
Development of economic strategy to synthesize hollow zeolite with widely tunable Si/Al ratios providing variable acidity is of great significance in industry. Here, a one-step and low-cost strategy without mesoporogen was successfully developed to synthesize single-crystal hollow ZSM-5 containing mesopores/macropores, with variable Si/Al ratios of about 14-∞ and 114-∞ at critical TPA/SiO ratios of 0.05-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!