Among the wearable sensor family, the triboelectric nanogenerator has excellent potential in human healthcare systems due to its small size, self-powered, and low cost. Here is the design and simulation of the triboelectric nanogenerator using the 3D model in COMSOL Multiphysics software for blood pressure measurement. As a reliable indicator of human physiological health, blood pressure (BP) has been utilized in more and more cases to predict and diagnose potential diseases and the dysfunction caused by hypertension. The main focus of this study is to prognosis and preserve human health against BP. It is one of the significant challenges in predicting and diagnosing BP in the human lifestyle. The self-powered triboelectric nanogenerator can diagnose BP using the wrist pulse pressure. To optimize the performance of the modeled triboelectric nanogenerator, the known wrist pulse pressure is applied explicitly, which converts the applied pressure into an equivalent electrical signal across the output terminals. An output open circuit voltage for the applied pulse pressure is 26 V. The generated output electrical signal is proportional to the applied pulse pressure, which is used to know the BP range. It ensures that the triboelectric nanogenerator is an opted sensor to sense the minute nadi pressure signal. This work validates that the simulated model has the potential to act as several health care monitors such as respiratory rate, heart rate, glucose range, joint motion sensing, gait, and CO detectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9352328 | PMC |
http://dx.doi.org/10.1021/acsomega.2c03281 | DOI Listing |
Small
January 2025
Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Physics, Chongqing University, Chongqing, 400044, P. R. China.
The effective collection of interfacial tribo-charges and an increase in load voltage are two essential factors that improve the output energy of triboelectric nanogenerators. However, some tribo-charges are hardly collected through one or multiple integrated side electrodes based on corona discharge, and their load voltages are limited by air breakdown in adjacent electrodes. In this study, a dynamic quasi-dipole potential distribution model is proposed to systematically reveal the mechanisms of interfacial tribo-charge loss.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.
Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada. Electronic address:
This study focuses on the fabrication of 3D-printed chitosan/TiCT-MXene aerogels with varying MXene concentrations (1, 2, 5, and 10 wt%) using the direct ink writing (DIW) method. The inks were freeze-dried to form aerogels, and FTIR and XRD analyses confirmed interactions between chitosan and MXene molecules, leading to increased spacing between MXene nanosheets. Rheological testing showed improved shear-thinning behavior, enhancing printability.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Zhejiang Province, Hangzhou 311121, Zhejiang, People's Republic of China. Electronic address:
To achieve the green and sustainable development of environment, biocompatible hydrogels with exceptional ionic conductivity and flexibility are highly desired for intelligent and wearable sensors. However, it remains a great challenge to obtain biopolymer hydrogel-based sensors with high transparency, excellent mechanical properties, and good adhesion ability simultaneously. Herein, starch/polyacrylamide double-network hydrogel is achieved to endow the multifunctionality of traditional hydrogel sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!