Segmentation of skin lesions plays a very important role in the early detection of skin cancer. However, indistinguishability due to various artifacts such as hair and contrast between normal skin and lesioned skin is an important challenge for specialist dermatologists. Computer-aided diagnostic systems using deep convolutional neural networks are gaining importance in order to cope with difficulties. This study focuses on deep learning-based fusion networks and fusion loss functions. For the automatic segmentation of skin lesions, U-Net (U-Net + ResNet 2D) with 2D residual blocks and 2D volumetric convolutional neural networks were fused for the first time in this study. Also, a new fusion loss function is proposed by combining Dice Loss (DL) and Focal Tversky Loss (FTL) to make the proposed fused model more robust. Of the 2594 image dataset, 20% is reserved for test data and 80% for training data. In test data training, a Jaccard score of 0.837 and a dice score of 0.918 were obtained. The proposed model was also scored on the ISIC 2018 Task 1 test images, whose ground truths were not shared. The proposed model performed well and achieved a Jaccard index of 0.800 and a dice score of 0.880 in the ISIC 2018 Task 1 test set. In addition, it has been observed that the new fused loss function obtained by fusing Focal Tversky Loss and Dice Loss functions in the proposed model increases the robustness of the model in the tests. The proposed new loss function fusion model has outstripped the cutting-edge approaches in the literature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355768PMC
http://dx.doi.org/10.1155/2022/2157322DOI Listing

Publication Analysis

Top Keywords

fusion loss
12
loss function
12
proposed model
12
loss
9
fusion model
8
segmentation skin
8
skin lesions
8
convolutional neural
8
neural networks
8
loss functions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!