Control of tuberculosis depends on the rapid expression of protective CD4 T-cell responses in the (Mtb)-infected lungs. We have recently shown that the immunomodulatory cytokine IL-10 acts intrinsically in CD4 T cells and impairs their parenchymal migratory capacity, thereby preventing control of Mtb infection. Herein, we show that IL-10 overexpression does not impact the protection conferred by the established memory CD4 T-cell response, as BCG-vaccinated mice overexpressing IL-10 only during Mtb infection display an accelerated, BCG-induced, Ag85b-specific CD4 T-cell response and control Mtb infection. However, IL-10 inhibits the migration of recently activated ESAT-6-specific CD4 T cells into the lung parenchyma and impairs the development of ectopic lymphoid structures associated with reduced expression of the chemokine receptors CXCR5 and CCR7. Together, our data support a role for BCG vaccination in preventing the immunosuppressive effects of IL-10 in the fast progression of Mtb infection and may provide valuable insights on the mechanisms contributing to the variable efficacy of BCG vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9353026 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.946181 | DOI Listing |
Cureus
December 2024
Department of Microbiology, ESIC Medical College and Hospital, Faridabad, IND.
Aim: This study aimed to determine the prevalence of microbiologically confirmed female genital tuberculosis (FGTB) infection in patients attending a tertiary care hospital in North India.
Materials And Methods: A total of 623 endometrial biopsy samples were processed in the mycobacteriology laboratory from the outpatient and inpatient gynecology departments between May 2022 and February 2024. Ziehl-Neelsen (ZN) smear was performed on all samples.
J Bacteriol
January 2025
Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA.
Tuberculosis is a respiratory infection that is caused by members of the complex, with (Mtb) being the predominant cause of the disease in humans. The approval of pretomanid and delamanid, two nitroimidazole-based compounds, for the treatment of tuberculosis encourages the development of more nitro-containing drugs that target Mtb. Similar to the nitroimidazoles, many antimycobacterial nitro-containing scaffolds are prodrugs that require reductive activation into metabolites that inhibit the growth of the pathogen.
View Article and Find Full Text PDFMol Pharm
January 2025
State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China.
Tuberculosis (TB) is a chronic infectious disease caused by (MTB). Tuberculous granuloma is the central and key pathological structure of tuberculosis and is characterized by tissue hypoxia and ineffective drug delivery. To address these issues, this study fabricated a composite nanoparticle loaded with catalase (CAT) and levofloxacin (LEV) (CAT@LEV-NPs) and then combined it with ultrasound (US) to investigate the bactericidal effect and underlying mechanisms using TB spheroids.
View Article and Find Full Text PDFViruses
November 2024
Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz-BA), Salvador 40296-710, Bahia, Brazil.
Human T-cell leukemia virus type 1 (HTLV-1) is associated with an increased risk of tuberculosis (TB). This study aimed to evaluate the performance of the QuantiFERON-TB Gold (QFT) test for the diagnosis of (MTB) infection in HTLV-1-infected individuals. HTLV-1-infected participants were divided into four groups: HTLV-1-infected individuals with a history of tuberculosis (HTLV/TB), individuals with positive HTLV and tuberculin skin tests (HTLV/TST+) or negative TST (HTLV/TST-), and HTLV-1-negative individuals with positive TST results (HN/TST+).
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
(Mtb) is the causative agent of tuberculosis, the world's deadliest infectious disease. Mtb uses a variety of mechanisms to evade the human host's defenses and survive intracellularly. Mtb's oxidative stress response enables Mtb to survive within activated macrophages, an environment with reactive oxygen species and low pH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!