Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chronic wounds have made a challenge in medical healthcare due to their biofilm infections, which reduce the penetrance of the antibacterial agents in the injury site. In infected wounds, the most common bacterial strains are and . Biofilm disruption in chronic wounds is crucial in wound healing. Due to their broad-spectrum antibacterial properties and fewer side effects, anti-biofilm peptides, especially bacteriocins, are promising in the healing of chronic wounds by biofilm destruction. This study reviews the effects of antimicrobial and anti-biofilm agents, including bacteriocins and protease enzymes as a novel approach, on wound healing, along with analyzing the molecular docking between a bacterial protease and biofilm components. Among a large number of anti-biofilm bacteriocins identified up to now, seven types have been registered in the antimicrobial peptides (AMPs) database. Although it is believed that bacterial proteases are harmful in wound healing, it has recently been demonstrated that these proteases like the human serine protease, in combination with AMPs, can improve wound healing by biofilm destruction. In this work, docking results between metalloprotease from and proteins of and involved in biofilm production, showed that this bacterial protease could efficiently interact with biofilm components. Infected wound healing is an important challenge in clinical trials due to biofilm production by bacterial pathogens. Therefore, simultaneous use of proteases or anti-biofilm peptides with antimicrobial agents could be a promising method for chronic wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9348543 | PMC |
http://dx.doi.org/10.34172/apb.2022.047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!