Thickness of two-dimensional (2D) metal-organic frameworks (MOFs) govern their intriguing functionalities. Primarily this thickness is controlled by the stacking between the metal-organic layers (MOL). It is observed that until now such modulating factors for stacking efficiency of MOL are not well studied. Here, we report a fundamental hypothesis to comprehend regulation of stacking efficiency among MOLs as a function of chemical structure of organic ligands (dicarboxylic acids and pillar linkers). This basically involves a series of isostructural three-dimensional (3D) MOFs which contain linkers of variable chemical nature that could be depillared to generate 2D stacked MOFs of different thickness. Depending on the linkers, we encountered the formation of single MOL to stacked multiple MOLs as evidenced from atomic force microscopic and other experimental analysis. The present study gives a concrete correlation between the stacking within 2D MOFs (from monolayer to multilayers), and their 3D counter parts, which may provide a thickness tuning pathway for 2D MOFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202201665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!