Aptamer-based electrolyte-gated graphene field-effect transistor (EGFET) biosensors have gained considerable attention because of their rapidity and accuracy in terms of quantification of a wide range of biomarkers. Functionalization of the graphene channel of EGFETs with aptamer biorecognition elements (BREs) is a crucial step in fabrication of EGFET aptasensors. This paper presents a comprehensive comparison of commonly used biochemical functionalization approaches applied for preparation of sensing films in EGFET aptasensors, namely indirect and direct immobilization of BREs. This study is the first of its kind to experimentally compare the two BREs immobilization approaches in terms of their effects on the carrier mobility of the monolayer graphene channel and their suitability for sensing applications. Both approaches can preserve and even improve the carrier mobility of bare graphene channel and hence the sensitivity of the EGFET; however, the direct BREs immobilization method was selected to develop an aptameric EGFET biosensor as this method enables simpler and more efficient preparation of the graphene-based aptameric sensing film. The utility of the prepared EGFET aptasensor is demonstrated through detection of tumor necrosis factor-α (TNF-α), an important inflammatory biomarker. The direct BREs immobilization approach is applied to develop an EGFET aptasensor to measure TNF-α in a detection range from 10 pg/ml to 10 ng/ml, representative of its physiological level in human sweat, as a non-invasively accessible biofluid. The outstanding sensing performance of the developed TNF-α EGFET aptasensor based on direct BREs immobilization can pave the way for development of graphene biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.340177 | DOI Listing |
Anal Chim Acta
August 2022
School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada. Electronic address:
Aptamer-based electrolyte-gated graphene field-effect transistor (EGFET) biosensors have gained considerable attention because of their rapidity and accuracy in terms of quantification of a wide range of biomarkers. Functionalization of the graphene channel of EGFETs with aptamer biorecognition elements (BREs) is a crucial step in fabrication of EGFET aptasensors. This paper presents a comprehensive comparison of commonly used biochemical functionalization approaches applied for preparation of sensing films in EGFET aptasensors, namely indirect and direct immobilization of BREs.
View Article and Find Full Text PDFWaste Manag
December 2018
Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece. Electronic address:
Poultry manure (PM) can contain ammonium and ammonia nitrogen, which may inhibit the anaerobic process. The aim of this work was to evaluate the performance of anaerobic digestion of PM co-digested with fruit and vegetable waste. Two semi-continuous bench scale (19L) stirred tank reactors were used.
View Article and Find Full Text PDFLangmuir
February 2019
Department of Chemistry and Biochemistry and Center for Nano Bio-Detection , National Chung Cheng University, Chiayi 621 , Taiwan.
Surface modification for biosensors has focused attention for improvement of their sensitivity and specificity, particularly for the detection in complex medium. In this work, we have synthesized zwitterionic carboxybetaine-thiols (CB-thiols) and sulfobetaine-thiols (SB-thiols) for modification of gold substrates to form a functional self-assembled monolayer (SAM) for the immunoassay in a surface plasmon resonance (SPR) biosensor. X-ray photoelectron spectroscopy (XPS), contact angle goniometer, and cyclic voltammetry were applied for characterizations of elemental composition, surface wettability, and packing density, respectively.
View Article and Find Full Text PDFBMC Genomics
July 2018
USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Campus Bordeaux Carreire, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.
Background: Mycoplasma hominis is a human urogenital pathogen involved in gynaecological, neonatal and extra-genital infections. However, no versatile genetic tools are currently available to study the pathogenicity of this bacterium. Targeting-Induced Local Lesions IN Genomes (TILLING) is a reverse-genetic method that combines point mutations induced by chemical mutagenesis with a DNA screening technique.
View Article and Find Full Text PDFInt J Biol Macromol
April 2018
Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India. Electronic address:
Biopolymers have been serving the mankind in various ways since long. Over the last few years, these polymers have found great demand in various domains which includes bio medicine, tissue engineering, bio sensor fabrications etc. because of their excellent bio compatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!