Magnetic biosensor takes advantage of rapid and facile magnetic separation/collection of targets, however, generally relies on additional signal labels to generate signal in a tedious and high-cost way. Here, we proposed a chemical and electrochemical conversion (C-ECC) method to develop a label-free electrochemical magnetic biosensor to detect antibiotics enrofloxacin (ENR). The C-ECC method integrates the chemical decomposition of magnetic beads (MBs) to release ironic ions and the simultaneous electrochemical deposition of Prussian blue (PB) analogs through the reaction of ironic ions and co-existing KFe(CN). Unlike conventional method that relies on the physical magnetic property of MBs, the C-ECC method fully exploited the chemical/electrochemical properties of MBs to produce electrochemically active PB to generate signal, thus endowing MBs with dual roles in both sample treatment and signal generation. The incorporation of chemical and electrochemical conversion produced more PB with higher electroactivity when compared with sole chemical or electrochemical conversion. Moreover, an interesting electrochemical refreshment (ER) was designed to remove insulative species on the electrode surface to improve electroactivity of electrode and benefit amperometric detection significantly. Under optimized conditions, the C-ECC-based biosensor presented limit of detection (LOD) of 4.17 pg mL for ENR, which is lower than most analogs, as well as satisfactory specificity. The biosensor also performed well in fish and chicken meat samples, with LODs lower than maximum residue limits of national standards. The C-ECC method may create a new way to design magnetic sensors and contribute to rapid, facile and sensitive detection in agriculture/food, clinic diagnosis and environmental monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.340123DOI Listing

Publication Analysis

Top Keywords

chemical electrochemical
16
electrochemical conversion
16
c-ecc method
16
prussian blue
8
magnetic biosensor
8
rapid facile
8
generate signal
8
ironic ions
8
magnetic
7
electrochemical
7

Similar Publications

The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.

View Article and Find Full Text PDF

An MIL-53(FeNiCo) decorated BiVO photoanode for efficient photoelectrochemical water oxidation.

Dalton Trans

January 2025

Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.

BiVO is considered as one of the important candidate materials for photoelectrochemical water splitting technology. However, the low efficiency of charge separation and poor kinetics of water oxidation limit its performance in PEC water splitting. In this work, a BiVO/MIL-53(FeNiCo) photoanode was constructed by a facile hydrothermal deposition method, exhibiting excellent water oxidation ability under AM 1.

View Article and Find Full Text PDF

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

Precise Synthesis of Complex Si-Si Molecular Frameworks.

J Am Chem Soc

January 2025

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States.

In this Perspective, we highlight the emergence of target-oriented syntheses of complex molecules composed of Si-Si (oligosilanes) rather than C-C bonds. Saturated oligosilanes structurally resemble alkanes with respect to a tetrahedral geometry, a preference for a staggered conformation in linear chains, the ability to form stable small rings, and tetrahedral stereochemistry at asymmetrically functionalized Si centers. There are also critical differences, for example, differences in multiple bonding and the ability to form penta- and hexacoordinated structures, that mean that chemical reactivity and, in particular, rules for stereoselective synthesis do not cleanly translate from carbon to silicon.

View Article and Find Full Text PDF

Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!