Dual-mode colorimetric determination of As(III) based on negatively-charged aptamer-mediated aggregation of positively-charged AuNPs.

Anal Chim Acta

School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, 800 Dongchuan Rd., Shanghai, 200240, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai, 200240, China; Shanghai Yangtze River Delta Eco-environmental Change and Management Observation and Research Station, Ministry of Science and Technology, China. Electronic address:

Published: August 2022

The aggregation and redispersion of positively-charged AuNPs ((+)AuNPs) modified with cysteamine (CS) could be regulated by the negatively charged As(III)-specific aptamer (As(III)-apt). In general, (+)AuNPs aggregated with increasing inducer concentration. However, in the present study, it was found that (+)AuNPs re-dispersed after a certain high concentration of As(III)-apt was reached. By optimizing the concentration of As(III)-apt that resulted in the aggregation and redispersion behavior of (+)AuNPs, a dual-mode colorimetric aptasensor for As(III) determination was established. It was not only able to quantify As(III) sensitively over a ranges of As(III) concentrations, but also to selectively differentiate As(III) and eliminate false results from other control ions by dual-mode.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.340111DOI Listing

Publication Analysis

Top Keywords

dual-mode colorimetric
8
positively-charged aunps
8
aggregation redispersion
8
concentration asiii-apt
8
asiii
5
colorimetric determination
4
determination asiii
4
asiii based
4
based negatively-charged
4
negatively-charged aptamer-mediated
4

Similar Publications

Dual-plasmonic eccentric nanostructure with prominent colorimetric and photothermal performance to detect zearalenone by dual signal immunochromatography assay.

Talanta

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China. Electronic address:

In the study, an eccentric heterogeneous core-shell nanomaterial Au@CuSe was simply and rapidly synthesized. This novel nano-structure exhibits superior colorimetric intensity, enhanced antibody coupling efficiency, and strong broadband absorption across the visible to near-infrared spectrum, with a photothermal conversion efficiency of 59.40%.

View Article and Find Full Text PDF

The abnormal expression of acetylcholinesterase (AChE) is linked to the development of various diseases. Accurate determination of AChE activity as well as screening AChE inhibitors (AChEIs) holds paramount importance for early diagnosis and treatment of AChE-related diseases. Herein, a fluorescent and colorimetric dual-channel probe based on gold nanoclusters (AuNCs) and manganese dioxide nanosheets (MnO NSs) was developed.

View Article and Find Full Text PDF

TiCT MXene nanoribbons@MnO: A novel multifunctional probe for colorimetric and fluorescence dual-response sensing of trichlorfon.

Talanta

December 2024

Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China. Electronic address:

Manganese dioxide nanosheets (MnO NSs) have garnered significant attention in analytical sensing, while the majority of the previous reports suffer from a complex preparation process involving reducing agents, template or high-temperature. In this work, a novel MnO NSs decorated TiCT MXene nanoribbons (TiCTNR@MnO) composite was firstly assemblied via a facile one-step strategy and applied as a bi-signal generator to enable colorimetric and fluorescence (FL) dual-response sensing. During the assembly process, TiCTNR innovatively acted as both reductant and carrier to prevent the aggregation of MnO NSs.

View Article and Find Full Text PDF

Development of a dual-mode lateral flow assay based on structure-guided aptamers for the detection of capsaicin in gutter oils.

Biosens Bioelectron

December 2024

Teaching and Research Office of Food Safety, School of Public Course, Bengbu Medical College, Bengbu, 233000, China. Electronic address:

The construction of structure-guided aptamers and the ultra-sensitive aptamer-based lateral flow assays (Apt-LFA) integrated detection method hold significant potential for food analysis. Using an engineered modified sequence strategy, we successfully developed the aptamer Cap-1-2M4, significantly enhancing its affinity for capsaicin (CAP) to 0.6197 ± 0.

View Article and Find Full Text PDF

Gold nanoclusters-based dual-mode ratiometric sensing system for selective and sensitive detection of paraquat.

Talanta

December 2024

Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China. Electronic address:

Unreasonable or illegal utilization of pesticides may lead to pollution of agricultural products, especially with some persistent but effective pesticides. Hence, there is an urgent need to develop sensitive and rapid methods for pesticide detection to ensure the safety of agricultural products. Herein, a dual-mode ratiometric sensing system utilizing two gold nanoclusters (G/R-AuNCs) was designed and constructed for paraquat (PQ) detection, a typical, highly toxic, widely used pesticide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!