Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress.

Life Sci

Non-communicable Disease Group, Translational Health Science and Technology (THSTI), Faridabad 121001, Haryana, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India. Electronic address:

Published: October 2022

SGLT2 inhibitors show promising cardio-protection in the diabetic populace. However, the defending effect of SGLT2 inhibition in diabetes-associated cardiac complications and the molecular mechanism behind this effect are not thoroughly studied. Therefore, we aimed to investigate the effect of Empagliflozin, an SGLT2 inhibitor, in type-2 diabetic rat hearts. We induced type-2 diabetes in SD rats by giving a high-fructose diet for 20 weeks. We administered Empagliflozin (10 mg/kg p.o.) daily from the 12th week to the 20th week, along with high-fructose diet. We weighed the cardiac structure and function by echocardiography, electrocardiography, and blood pressure in diabetic rats. Other parameters like cardiac fibrosis, oxidative stress, and mitochondrial dynamics by protein expression were measured. To simulate a similar in-vivo condition, we persuaded insulin resistance in H9c2 cells by palmitic acid (PA) treatment. We then examined glucose uptake, cellular ROS, mitochondrial ROS and membrane potential in the presence and absence of Empagliflozin treatment. We saw a significant perturbation of the majority of the parameters associated with cardiac structure and function in high-fructose diet-induced diabetic rats. We found that administration of Empagliflozin improved all the perturbed parameters by attenuating insulin resistance, oxidative stress, and cardiac fibrosis and also by promoting cardiac mitochondrial fusion in high-fructose diet-induced type-2 diabetic rats. Empagliflozin also reduced palmitate-induced insulin resistance, total cellular ROS, and mitochondrial ROS in H9c2 cells. Our study concluded that SGLT2 inhibition with Empagliflozin prevented the high-fructose diet-insulted cardiac function by suppressing insulin resistance and oxidative stress and promoting mitochondrial fusion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2022.120862DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
insulin resistance
16
high-fructose diet-induced
12
diabetic rats
12
cardiac
8
sglt2 inhibition
8
type-2 diabetic
8
high-fructose diet
8
cardiac structure
8
structure function
8

Similar Publications

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

ALDH2 Plays a Role in Spermatogenesis and Male Fertility by Regulating Oxidative Stress in Mice.

Exp Cell Res

December 2024

School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China. Electronic address:

Spermatogenesis and sperm maturation are complex biological processes that involve intricate cellular and molecular interactions. The Aldh2 gene is involved in the metabolism of specific aldehydes generated by oxidative stress. Aldh2 is abundantly expressed in the testis and epididymis; however, the specific role of Aldh2 in regulating spermatogenesis and sperm maturation remains unclear.

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!