Herein, a conjugated polymer and fullerene bearing architecture-based electrochemical Tyrosinase (Tyr) enzyme inhibition biosensor for indomethacin (INDO) drug active compound has been developed. For this purpose, three moieties of benzoxadiazole, thienopyrroledione, and benzodithiophene containing conjugated polymer; poly[BDT-alt-(TP;BO)] was used as a transducer modifier together with fullerene for catechol detection. The specific combination of these materials is considered an effective way to fabricate highly sensitive and fast response catechol biosensors for the first time. Electrochemical and surface characteristics of the modified electrodes were obtained by cyclic voltammetry, electrochemical impedance spectroscopy, scanning electron microscopy, and atomic force microscopy. The effect of the parameters during chronoamperometric measurements on the biosensor response was also studied. Using optimized conditions, biosensing of catechol was achieved between 0.5 and 62.5 µM with a limit of the detection 0.11 µM. Tyr inhibition was followed with INDO drug active compound and it was found that INDO has a mixed type characteristic of enzyme kinetics with an I value of 15.11 µM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2022.108219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!