Carvedilol attenuates brain damage in mice with hepatic encephalopathy.

Int Immunopharmacol

Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.

Published: October 2022

Brain injury is the most common and serious consequence of hepatic encephalopathy (HE), and its pathophysiology is poorly understood. Excessive inflammatory, oxidative and apoptotic responses are the major mechanisms involved in the progression of brain injury induced by HE. Carvedilol is an adrenergic receptor antagonist with pronouncedantioxidant and anti-inflammatory activity. The present study aimed to investigatethe effects and underlying mechanisms of carvedilol on HE-induced brain damage in mice. Experimental model of HE was induced by the injection of thioacetamide (200 mg/kg) for two consecutive days and then mice were treated with carvedilol (10 or 20 mg/kg/day, orally) for 3 days in treatment groups. After the behavioral test, animals were sacrificed and the brain tissues were collected for biochemical, real time PCR and immunohistochemical analysis. The results showed that carvedilol improved locomotor impairment and reduced mortality rate in mice with HE. Carvedilol treatment decreased the brain levels of oxidative stress markers and induced Nrf2/HO-1 pathway. Carvedilol inhibited the activity of nuclear factor kappa B (NF-κB) and the expression of pro-inflammatory cytokines TNF-α, IL1β and IL-6 in the brain tissues. Treatment of mice with carvedilol caused a significant reduction in the brain levels of iNOS/NO, myeloperoxidase (MPO), cyclooxygenase (COX)-2 and chemokine MCP-1 as proinflammatory mediators in HE. Moreover, the ratio of Bcl2/Bax was increased and apoptotic cell death was decreased in the brain of mice treated with carvedilol. In conclusion, carvedilol exerted protective effect against HE-induced brain injury through increasing antioxidant defense mechanisms and inhibitionof inflammatory and apoptotic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.109119DOI Listing

Publication Analysis

Top Keywords

brain injury
12
carvedilol
10
brain
10
brain damage
8
damage mice
8
hepatic encephalopathy
8
he-induced brain
8
mice treated
8
treated carvedilol
8
brain tissues
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!