A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel pilot animal model for bone augmentation using osseous shell technique for preclinical in vivo studies. | LitMetric

Objectives: Bone grafting is commonly used to reconstruct skeletal defects in the craniofacial region. Several bone augmentation models have been developed to evaluate bone formation using novel bone substitute materials. The aim of this study was to evaluate a surgical animal model for establishing a three-dimensional (3D) grafting environment in the animal's mandibular ramus for bone augmentation using the osseous shell technique, as in humans.

Materials And Methods: Osteological survey of New Zealand white (NZW) rabbit skull (Oryctolagus cuniculus): Initial osteological and imaging surveys were performed on a postmortem skull for a feasibility assessment of the surgical procedure. Postmortem pilot surgery and cone beam computed tomography imaging: a 3D osseous defect was created in the mandibular ramus through a submandibular incision. The osseous shell plates were stabilized with osteosynthesis fixation screws, and defects were filled with particular bone grafting material. In vivo surgical procedure: surgeries were conducted in four 8-week-old NZW rabbits utilizing two osseous shell materials: xenogeneic human cortical plates and autogenous rabbit cortical plates. The created 3D defects were filled using xenograft and allograft bone grafting materials. The healed defects were evaluated for bone formation after 12 weeks using histological and cone beam computed tomography imaging analysis.

Results: Clinical analysis 12 weeks after surgery revealed the stability of the 3D grafted bone augmentation defects using the osseous shell technique. Imaging and histological analyses confirmed the effectiveness of this model in assessing bone formation.

Conclusions: The proposed animal model is a promising model with the potential to study various bone grafting materials for augmentation in the mandibular ramus using the osseous shell technique without compromising the health of the animal. The filled defects could be analyzed for osteogenesis, quantification of bone formation, and healing potential using histomorphometric analysis, in addition to 3D morphologic evaluation using radiation imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9760144PMC
http://dx.doi.org/10.1002/cre2.644DOI Listing

Publication Analysis

Top Keywords

osseous shell
24
bone augmentation
16
shell technique
16
bone grafting
16
bone
13
animal model
12
bone formation
12
mandibular ramus
12
augmentation osseous
8
surgical procedure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!