Human cytomegalovirus (HCMV) causes congenital neurological lifelong disabilities. To date, the neuropathogenesis of brain injury related to congenital HCMV (cCMV) infection is poorly understood. This study evaluates the characteristics and pathogenetic mechanisms of encephalic damage in cCMV infection. Ten HCMV-infected human fetuses at 21 weeks of gestation were examined. Specifically, tissues from different brain areas were analyzed by: (i) immunohistochemistry (IHC) to detect HCMV-infected cell distribution, (ii) hematoxylin-eosin staining to evaluate histological damage and (iii) real-time PCR to quantify tissue viral load (HCMV-DNA). The differentiation stage of HCMV-infected neural/neuronal cells was assessed by double IHC to detect simultaneously HCMV-antigens and neural/neuronal markers: nestin (a marker of neural stem/progenitor cells), doublecortin (DCX, marker of cells committed to the neuronal lineage) and neuronal nuclei (NeuN, identifying mature neurons). HCMV-positive cells and viral DNA were found in the brain of 8/10 (80%) fetuses. For these cases, brain damage was classified as mild (n = 4, 50%), moderate (n = 3, 37.5%) and severe (n = 1, 12.5%) based on presence and frequency of pathological findings (necrosis, microglial nodules, microglial activation, astrocytosis, and vascular changes). The highest median HCMV-DNA level was found in the hippocampus (212 copies/5 ng of human DNA [hDNA], range: 10-7,505) as well as the highest mean HCMV-infected cell value (2.9 cells, range: 0-23), followed by that detected in subventricular zone (1.7 cells, range: 0-19). These findings suggested a preferential viral tropism for both neural stem/progenitor cells and neuronal committed cells, residing in these regions, confirmed by the expression of DCX and nestin in 94% and 63.3% of HCMV-positive cells, respectively. NeuN was not found among HCMV-positive cells and was nearly absent in the brain with severe damage, suggesting HCMV does not infect mature neurons and immature neural/neuronal cells do not differentiate into neurons. This could lead to known structural and functional brain defects from cCMV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10006254PMC
http://dx.doi.org/10.1007/s10571-022-01258-9DOI Listing

Publication Analysis

Top Keywords

hcmv-positive cells
12
cells
11
brain damage
8
human fetuses
8
viral tropism
8
ccmv infection
8
ihc detect
8
hcmv-infected cell
8
neural/neuronal cells
8
neural stem/progenitor
8

Similar Publications

In the setting of infectious diseases, antibodies show different functions beyond neutralizing activity. In this study, we investigated the activation of NK cells in vitro in the presence of human cytomegalovirus (HCMV)-specific antibodies and their potential role in the control of HCMV infection through antibody-dependent cell cytotoxicity (ADCC). Retinal pigmented epithelial cells (ARPE-19) infected with the HCMV strain VR1814 were co-cultured with cytokine-activated peripheral blood mononuclear cells (PBMCs) in the presence of sera collected from 23 HCMV-seropositive and 9 HCMV-seronegative donors.

View Article and Find Full Text PDF

Development of a vaccine for human cytomegalovirus (hCMV) is critical because of the severe consequences of infection in congenitally infected newborns and immunocompromised patients. The assessment of hCMV-neutralizing antibody activity is crucial for vaccine development. This study evaluated a RT-qPCR assay targeting the immediate-early gene transcript of hCMV for determining microneutralizing antibody activity.

View Article and Find Full Text PDF

CD14 facilitates perinatal human cytomegalovirus infection in biliary epithelial cells via CD55.

JHEP Rep

May 2024

Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.

Background & Aims: A high human cytomegalovirus (HCMV) infection rate accompanied by an increased level of bile duct damage is observed in the perinatal period. The possible mechanism was investigated.

Methods: A total of 1,120 HCMV-positive and 9,297 HCMV-negative children were recruited, and depending on age, their liver biochemistry profile was compared.

View Article and Find Full Text PDF

To investigate the risk factors for human cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation in children and the impact of human cytomegalovirus infection on post-transplant immune reconstitution. A Retrospective Co-Hort study design was used to include 81 children treated with allo-HSCT from January 2020 to March 2022 at the Department of Hematology, Capital Institute of Pediatrics, Beijing, China, and followed up for 1 year. Real-time quantitative PCR was used to detect positive detection of HCMV in children after allo-HSCT, multifactorial logistic regression modeling was used to analyze the risk factors leading to HCMV infection, and generalized estimating equation modeling was used to analyze the effect of HCMV infection on the T-cells of the children who received allo-HSCT.

View Article and Find Full Text PDF

Adaptive NK cells constitute an NK cell subpopulation, which expands after human cytomegalovirus (HCMV) infection. This subpopulation has stronger production of cytokines after CD16 stimulation, longer life and persistence than conventional NK cells and are, therefore, interesting tools for cancer immunotherapy. Since there is limited information on adaptive NK cells in cancer patients, we described this population phenotypically and functionally, by flow cytometry, in the context of HER2 + breast cancer (BC) directed therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!