Antibiotic hydrogels with sustained release profiles are recognized as promising candidates to treat local bacterial infections with reduced adverse effects. However, it still remains challenging for clinical translation of these antibiotic gels due to safety concern of gel ingredients, complicated synthesis and fabrication procedures, and unsatisfactory rheological properties for practical uses in vivo. Herein, the preparation of a type of sprayable hydrogels by ionic interactions between aminoglycosides and cellulose nanocrystals (CNC) is proposed for the treatment of local infections such as bacteria-infected wounds. The CNC-based hydrogels are applicable for all kinds of aminoglycoside antibiotics and show excellent gel stability and rheological behaviors such as shear thinning and fast self-healing, allowing facile administration by injection or spraying. The hydrogels exhibit efficient antibacterial activity both in vitro and in vivo, and accelerate bacteria-infected wounds by spraying on the infected area. The proposed hydrogels by simply mixing of aminoglycosides and CNC provide great prospects for clinical translation in the treatment of local infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202201286 | DOI Listing |
Mikrochim Acta
January 2025
Key Laboratory of New Energy & New Functional Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, School of Medicine, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China.
Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules.
View Article and Find Full Text PDFBiomacromolecules
January 2025
State Key Laboratory of Separation Membranes and Membrane Processes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
Antioxidant hydrogels that can provide a moist environment and scavenge reactive oxygen species have emerged as highly potential wound dressing materials. In situ-forming and good tissue adhesiveness will make them more desirable, as they can fill the irregular wound defect, stick to the wound, and offer intimate contact with the wound. Herein, a hydrogel dressing combining in situ-forming, good tissue adhesiveness, and excellent antioxidant capabilities was developed by simply conjugating dopamine onto carboxymethyl chitosan.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Textile and Clothing Engineering, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
Recently developed asymmetric heterogeneous moisture-driven electricity generators (AHMEGs) are advantageous for harvesting energy from ubiquitous moisture due to their superior output performance and possible flexibility. However, the regeneration of AHMEG has seldom been explored. Here, we report the fabrication of flexible AHMEGs with regeneration ability simply by asymmetrically incorporating carbon nanotubes into a bilayer-structured gel with heterogeneities of both hygroscopicity and charge.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Emergency, Shandong University, Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China, Jinan, Shandong, 250100, CHINA.
Metallic oxides especially lithium and titanium oxides are well known for their osteogenic properties. When combined in the right proportions, metallic oxides can have an even greater impact. However, releasing ions from oxides can lead to oxidative stress, which is harmful to cell growth.
View Article and Find Full Text PDFNano Lett
January 2025
College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China.
The separation and recovery of useful organics from wastewater have been a promising alternative to tackling water pollution and resource shortages, while strategies that truly work have rarely been explored. Herein, a reversible CO triggered sol-gel state transformation mediated selective organics uptake-release system using a surface modified carbonitride (S-CN) is proposed and exhibits remarkable organics recovery performance from wastewater. Results show that CO can serve as a cross-linker for linking S-CN particles to form a hydrogel by electrostatic interaction and hydrogen bonding, which can be recycled to the pristine sol state simply by removing the cross-linked CO with Ar purging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!