Bladder outlet obstruction (BOO) is a common disease that always make the bladder develops from inflammation to fibrosis. This study was to investigate the effect of exosomes from human urine-derived stem cells (hUSCs) on bladder fibrosis after BOO and the underlying mechanism. The BOO mouse model was established by inserting a transurethral catheter, ligation of periurethral wire, and removal of the catheter. Mouse primary bladder smooth muscle cells (BSMCs) were isolated and treated with TGFβ1 to mimic the bladder fibrosis model in vitro. Exosomes from hUSCs (hUSC-Exos) were injected into the bladder of BOO mice and added into the culture of TGFβ1-induced BSMCs. The associated factors in mouse bladder tissues and BSMCs were detected. It was confirmed that the treatment of hUSC-Exos alleviated mouse bladder fibrosis and down-regulated fibrotic markers (a-SMA and collagen III) in bladder tissues and TGFβ1-induced BSMCs. Overexpression of NRF1 in hUSC-Exos further improved the effects of hUSC-Exos on bladder fibrosis both in vivo and in vitro. TGFβR1 was a target of NRF1 and miR-301b-3p, and miR-301b-3p was a target of NRF1. It was next characterized that hUSC-Exos carried NRF1 to up-regulate miR-301B-3p, thereby reducing TGFβR1level. Our results illustrated that hUSC-Exos carried NRF1 to alleviate bladder fibrosis through regulating miR-301b-3p/TGFβR1 pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-022-04484-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!