Artificial neural network for cytocompatibility and antibacterial enhancement induced by femtosecond laser micro/nano structures.

J Nanobiotechnology

Advanced Manufacturing Center, Ningbo Institute of Technology, Beihang University, Ningbo, 315100, China.

Published: August 2022

The failure of orthopedic and dental implants is mainly caused by biomaterial-associated infections and poor osseointegration. Surface modification of biomedical materials plays a significant role in enhancing osseointegration and anti-bacterial infection. In this work, a non-linear relationship between the micro/nano surface structures and the femtosecond laser processing parameters was successfully established based on an artificial neural network. Then a controllable functional surface with silver nanoparticles (AgNPs) to was produced to improve the cytocompatibility and antibacterial properties of biomedical titanium alloy. The surface topography, wettability, and Ag release were carefully investigated. The effects of these characteristics on antibacterial activity and cytocompatibilty were also evaluated. Results show that the prepared surface is hydrophobic, which can prevent the burst release of Ag in the initial stage. The prepared surface also shows both good cytocompatibility toward the murine calvarial preosteoblasts MC3T3-E1 cells (derived from Mus musculus (mouse) calvaria) and good antibacterial effects against Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria, which is caused by the combined effect of appropriate micro/nano-structured feature and reasonable Ag release rate. We do not only clarify the antibacterial mechanism but also demonstrate the possibility of balancing the antibacterial and osteointegration-promoting properties by micro/nano-structures. The reported method offers an effective strategy for the patterned surface modification of implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357338PMC
http://dx.doi.org/10.1186/s12951-022-01578-4DOI Listing

Publication Analysis

Top Keywords

artificial neural
8
neural network
8
cytocompatibility antibacterial
8
femtosecond laser
8
surface modification
8
prepared surface
8
surface
7
antibacterial
6
network cytocompatibility
4
antibacterial enhancement
4

Similar Publications

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).

View Article and Find Full Text PDF

While machine learning (ML) models have been able to achieve unprecedented accuracies across various prediction tasks in quantum chemistry, it is now apparent that accuracy on a test set alone is not a guarantee for robust chemical modeling such as stable molecular dynamics (MD). To go beyond accuracy, we use explainable artificial intelligence (XAI) techniques to develop a general analysis framework for atomic interactions and apply it to the SchNet and PaiNN neural network models. We compare these interactions with a set of fundamental chemical principles to understand how well the models have learned the underlying physicochemical concepts from the data.

View Article and Find Full Text PDF

This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.

View Article and Find Full Text PDF

Background: Cardiovascular diseases (CVDs) continue to be the world's greatest cause of death. To evaluate heart function and diagnose coronary artery disease (CAD), myocardial perfusion imaging (MPI) has become essential. Artificial intelligence (AI) methods have been incorporated into diagnostic methods such as MPI to improve patient outcomes in recent years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!