A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Finite element analysis of dynamic changes in spinal mechanics of osteoporotic lumbar fracture. | LitMetric

Aim: This study aims to explore the effects of finite element biomechanical properties of different methods in the treatment of osteoporotic thoracolumbar fractures.

Methods: Based on the ultra-thin computed tomography scan data of a volunteer's thoracolumbar spine, the finite element method was used to simulate the treatment of osteoporotic thoracolumbar fracture. Spiral computed tomography scanning was used to obtain images of the thoracolumbar region, which was then imported into Mimics software to obtain the three-dimensional geometric model. The finite element model of normal T - L segment was established by finite element software Abaqus and the validity of the model loading was verified. The finite element model of T vertebral compression fracture was established based on normal raw data. The clinical overextension reduction manipulation was simulated by different treatment methods and the changes in stress and displacement in different parts of injured vertebrae were analyzed.

Results: An effective finite element model of T-L segment was established. The maximum stress, axial compression strength, axial compression stiffness, and transverse shear stiffness were significantly better in the percutaneous kyphoplasty and percutaneous vertebroplasty treatment group than in the conservative treatment group and open treatment group (P < 0.05). Additionally, there was no significant difference between the open treatment group and conservative treatment group, or between the PKP and PVP treatment group.

Conclusion: Percutaneous vertebroplasty and percutaneous kyphoplasty not only met the requirements of normal functional kinematics of thoracolumbar spine, but also restored the stability of thoracolumbar spine. They had good biomechanical properties and remarkable application effects. The application of finite element analysis can help select a scientific, reasonable, and effective treatment scheme for the clinical diagnosis and treatment of osteoporotic thoracolumbar fractures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356497PMC
http://dx.doi.org/10.1186/s40001-022-00769-xDOI Listing

Publication Analysis

Top Keywords

finite element
28
element model
12
treatment group
12
treatment osteoporotic
8
osteoporotic thoracolumbar
8
computed tomography
8
segment established
8
axial compression
8
finite
7
element
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!