Background: Histone deacetylases (HDACs) are believed to exacerbate traumatic brain injury (TBI) based on studies using pan-HDAC inhibitors. However, the HDAC isoform responsible for the detrimental effects and the cell types involved remain unknown, which may hinder the development of specific targeting strategies that boost therapeutic efficacy while minimizing side effects. Microglia are important mediators of post-TBI neuroinflammation and critically impact TBI outcome. HDAC3 was reported to be essential to the inflammatory program of in vitro cultured macrophages, but its role in microglia and in the post-TBI brain has not been investigated in vivo.

Methods: We generated HDAC3 mice and crossed them with CX3CR1 mice, enabling in vivo conditional deletion of HDAC3. Microglia-specific HDAC3 knockout (HDAC3 miKO) was induced in CX3CR1:HDAC3 mice with 5 days of tamoxifen treatment followed by a 30-day development interval. The effects of HDAC3 miKO on microglial phenotype and neuroinflammation were examined 3-5 days after TBI induced by controlled cortical impact. Neurological deficits and the integrity of white matter were assessed for 6 weeks after TBI by neurobehavioral tests, immunohistochemistry, electron microscopy, and electrophysiology.

Results: HDAC3 miKO mice harbored specific deletion of HDAC3 in microglia but not in peripheral monocytes. HDAC3 miKO reduced the number of microglia by 26%, but did not alter the inflammation level in the homeostatic brain. After TBI, proinflammatory microglial responses and brain inflammation were markedly alleviated by HDAC3 miKO, whereas the infiltration of blood immune cells was unchanged, suggesting a primary effect of HDAC3 miKO on modulating microglial phenotype. Importantly, HDAC3 miKO was sufficient to facilitate functional recovery for 6 weeks after TBI. TBI-induced injury to axons and myelin was ameliorated, and signal conduction by white matter fiber tracts was significantly enhanced in HDAC3 miKO mice.

Conclusion: Using a novel microglia-specific conditional knockout mouse model, we delineated for the first time the role of microglial HDAC3 after TBI in vivo. HDAC3 miKO not only reduced proinflammatory microglial responses, but also elicited long-lasting improvement of white matter integrity and functional recovery after TBI. Microglial HDAC3 is therefore a promising therapeutic target to improve long-term outcomes after TBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357327PMC
http://dx.doi.org/10.1186/s12974-022-02563-2DOI Listing

Publication Analysis

Top Keywords

hdac3 miko
36
white matter
16
hdac3
16
functional recovery
12
tbi
9
miko
9
matter integrity
8
integrity functional
8
mouse model
8
traumatic brain
8

Similar Publications

Orchestrating the frontline: HDAC3-miKO recruits macrophage reinforcements for accelerated myelin debris clearance after stroke.

Theranostics

January 2025

State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.

Article Synopsis
  • White matter is crucial for recovery after ischemic strokes, and recent research suggests microglial HDAC3 may contribute to white matter injury.
  • Researchers created knockout mice lacking microglial HDAC3 to study its effects on white matter using various techniques, revealing that these mice showed improved repair and function.
  • The study found that HDAC3-deficient microglia enhanced the recruitment of macrophages to clear myelin debris, which plays a significant role in remyelination and recovery post-stroke.
View Article and Find Full Text PDF

Arresting the bad seed: HDAC3 regulates proliferation of different microglia after ischemic stroke.

Sci Adv

March 2024

Department of Critical Care Medicine of Huashan Hospital, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.

The accumulation of self-renewed polarized microglia in the penumbra is a critical neuroinflammatory process after ischemic stroke, leading to secondary demyelination and neuronal loss. Although known to regulate tumor cell proliferation and neuroinflammation, HDAC3's role in microgliosis and microglial polarization remains unclear. We demonstrated that microglial HDAC3 knockout (HDAC3-miKO) ameliorated poststroke long-term functional and histological outcomes.

View Article and Find Full Text PDF

Background: Histone deacetylases (HDACs) are believed to exacerbate traumatic brain injury (TBI) based on studies using pan-HDAC inhibitors. However, the HDAC isoform responsible for the detrimental effects and the cell types involved remain unknown, which may hinder the development of specific targeting strategies that boost therapeutic efficacy while minimizing side effects. Microglia are important mediators of post-TBI neuroinflammation and critically impact TBI outcome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!