A gene is considered as essential when it is indispensable for cells to grow and replicate in a certain environment. However, gene essentiality is not a structural property but rather a contextual one, which depends on the specific biological conditions affecting the cell. This circumstantial essentiality of genes is what brings the attention of scientist since we can identify genes essential for cancer cells but not essential for healthy cells. This same contextuality makes their identification extremely challenging. Huge experimental efforts such as Project Achilles where the essentiality of thousands of genes is measured together with a plethora of molecular data (transcriptomics, copy number, mutations, etc.) in over one thousand cell lines can shed light on the causality behind the essentiality of a gene in a given environment. Here, we present an in-silico method for the identification of patient-specific essential genes using constraint-based modelling (CBM). Our method expands the ideas behind traditional CBM to accommodate multisystem networks. In essence, it first calculates the minimum number of lowly expressed genes required to be activated by the cell to sustain life as defined by a set of requirements; and second, it performs an exhaustive in-silico gene knockout to find those that lead to the need of activating additional lowly expressed genes. We validated the proposed methodology using a set of 452 cancer cell lines derived from the Cancer Cell Line Encyclopedia where an exhaustive experimental large-scale gene knockout study using CRISPR (Achilles Project) evaluates the impact of each removal. We also show that the integration of different essentiality predictions per gene, what we called Essentiality Congruity Score, reduces the number of false positives. Finally, we explored our method in a breast cancer patient dataset, and our results showed high concordance with previous publications. These findings suggest that identifying genes whose activity is fundamental to sustain cellular life in a patient-specific manner is feasible using in-silico methods. The patient-level gene essentiality predictions can pave the way for precision medicine by identifying potential drug targets whose deletion can induce death in tumour cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357337 | PMC |
http://dx.doi.org/10.1186/s12859-022-04855-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!