A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-vitro models of biocompatibility testing for restorative dental materials: From 2D cultures to organs on-a-chip. | LitMetric

In-vitro models of biocompatibility testing for restorative dental materials: From 2D cultures to organs on-a-chip.

Acta Biomater

Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, United States; Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States; Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, United States. Electronic address:

Published: September 2022

AI Article Synopsis

  • Dental caries is a widespread disease affecting over 90% of adults in Western countries, leading to more than 500 million dental restorations needed annually.
  • Current treatments involve using materials that replace lost enamel or dentin, but the effectiveness and compatibility of these materials with dental tissues are crucial for long-term success.
  • The review examines the characteristics of tooth structure important for materials testing, existing in-vitro methods for evaluating dental material biocompatibility, and suggests future research directions utilizing tissue engineering and organs-on-a-chip technologies.

Article Abstract

Dental caries is a biofilm-mediated, diet-modulated, multifactorial and dynamic disease that affects more than 90% of adults in Western countries. The current treatment for decayed tissue is based on using materials to replace the lost enamel or dentin. More than 500 million dental restorations are placed annually worldwide, and materials used for these purposes either directly or indirectly interact with dentin and pulp tissues. The development and understanding of the effects of restorative dental materials are based on different in-vitro and in-vivo tests, which have been evolving with time. In this review, we first discuss the characteristics of the tooth and the dentin-pulp interface that are unique for materials testing. Subsequently, we discuss frequently used in-vitro tests to evaluate the biocompatibility of dental materials commonly used for restorative procedures. Finally, we present our perspective on the future directions for biological research on dental materials using tissue engineering and organs on-a-chip approaches. STATEMENT OF SIGNIFICANCE: Dental caries is still the most prevalent infectious disease globally, requiring more than 500 million restorations to be placed every year. Regrettably, the failure rates of such restorations are still high. Those rates are partially based on the fact that current platforms to test dental materials are somewhat inaccurate in reproducing critical components of the complex oral microenvironment. Thus, there is a collective effort to develop new materials while evolving the platforms to test them. In this context, the present review critically discusses in-vitro models used to evaluate the biocompatibility of restorative dental materials and brings a perspective on future directions for tissue-engineered and organs-on-a-chip platforms for testing new dental materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814917PMC
http://dx.doi.org/10.1016/j.actbio.2022.07.060DOI Listing

Publication Analysis

Top Keywords

dental materials
28
restorative dental
12
materials
11
dental
10
in-vitro models
8
organs on-a-chip
8
dental caries
8
evaluate biocompatibility
8
perspective future
8
future directions
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: