Polystyrene (PS) is one of the most dangerous polymers, mainly because of the mutagenic or carcinogenic risk of the monomers used to produce it. Sea-Nine 211 is a commercial antifouling agent; its active ingredient is the biocide 4,5-dichloro-2-octyl-4-isothiazolinone-3-one (DCOIT). Micro- and nano-plastics have different synergistic effects on marine organisms together with organic pollutants. To understand the toxic effects of DCOIT and PS alone and in combination, marine Chlorella sp was selected as the experimental organism. The exposure concentration of DCOIT was set at 50 μg/L, and that of PS was set at 10 μg/L. The results show that all exposed groups promoted the growth of marine Chlorella sp in the late stage of exposure, and the recovery time of marine Chlorella sp in the exposed group containing PS was earlier. Changing trend of chlorophyll a was consistent with the growth trend. On the 15th day of exposure, the gene expression of the photosynthesis system in the combined exposed group showed a significant difference, and the cells produced oxidative stress. Scanning electron microscope observation shows the algae adhered to each other. The volume of algae cells in DCOIT and PS exposed groups decreased, and the internal structure of algae cells in each exposed group was damaged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbpc.2022.109426 | DOI Listing |
Water Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
Ocean oil spills can severely impact ecosystems and disrupt marine biodiversity and habitats. Microbial remediation is an effective method for removing thin oil slick contamination. In this study, the adsorption and degradation of low-concentration oil spills by Chlorella vulgaris LH-1 immobilized in konjac glucomannan (KGM) aerogel were investigated.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
APESA Pôle valorisation, Montardon, France.
This study evaluated the growth performance of and microalgae cultivated in diluted liquid digestate supplemented with CO, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH .L combined with the continuous injection of 1% v/v CO enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures.
View Article and Find Full Text PDFMicroorganisms
December 2024
Instituto Tecnológico de Canarias (ITC), Playa de Pozo Izquierdo, s/n, 35119 Santa Lucía de Tirajana, Gran Canaria, Spain.
Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl and AlCl were tested on freshwater and two marine algae, and .
View Article and Find Full Text PDFEnviron Res
January 2025
Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:
This work explores the synergies between N-rich (Chlorella pyrenoidosa) microalgae and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 2-9, Tongyeonghaean-ro, Tongyeong-si, 53064, Gyeongsangnam-do, Republic of Korea.
Ulva intestinalis (UI) is widely available edible seaweed and has potential to be introduced as functional food items in Bangladesh. However, potential health hazards of this seaweed with biotoxicity assays and its relation to heavy metal contents were not evaluated previously. With these objectives, toxic effects of UI collected from floating raft culture in Monkhali Beach was evaluated using various organisms such as Chlorella vulgaris, Artemia salina, Daphnia magna, and Lactuca sativa.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!