Chronic toxic effects of polystyrene micro-plastics, DCOIT and their combination on marine Chlorella sp.

Comp Biochem Physiol C Toxicol Pharmacol

Marine College, Shandong University, Weihai, Shandong 264209, China. Electronic address:

Published: November 2022

AI Article Synopsis

  • Polystyrene (PS) is a harmful polymer associated with cancer risks, while Sea-Nine 211 contains the biocide DCOIT, which poses additional threats to marine life.
  • Research on marine Chlorella sp revealed that exposure to both DCOIT and PS, set at concentrations of 50 μg/L and 10 μg/L respectively, led to increased growth in certain exposure periods, especially in combinations with PS.
  • Results indicated significant oxidative stress, damaged cell structures, and notable changes in gene expression related to photosynthesis in the algae exposed to both compounds.

Article Abstract

Polystyrene (PS) is one of the most dangerous polymers, mainly because of the mutagenic or carcinogenic risk of the monomers used to produce it. Sea-Nine 211 is a commercial antifouling agent; its active ingredient is the biocide 4,5-dichloro-2-octyl-4-isothiazolinone-3-one (DCOIT). Micro- and nano-plastics have different synergistic effects on marine organisms together with organic pollutants. To understand the toxic effects of DCOIT and PS alone and in combination, marine Chlorella sp was selected as the experimental organism. The exposure concentration of DCOIT was set at 50 μg/L, and that of PS was set at 10 μg/L. The results show that all exposed groups promoted the growth of marine Chlorella sp in the late stage of exposure, and the recovery time of marine Chlorella sp in the exposed group containing PS was earlier. Changing trend of chlorophyll a was consistent with the growth trend. On the 15th day of exposure, the gene expression of the photosynthesis system in the combined exposed group showed a significant difference, and the cells produced oxidative stress. Scanning electron microscope observation shows the algae adhered to each other. The volume of algae cells in DCOIT and PS exposed groups decreased, and the internal structure of algae cells in each exposed group was damaged.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2022.109426DOI Listing

Publication Analysis

Top Keywords

marine chlorella
16
exposed group
12
toxic effects
8
dcoit combination
8
combination marine
8
exposed groups
8
algae cells
8
dcoit
5
marine
5
exposed
5

Similar Publications

Ocean oil spills can severely impact ecosystems and disrupt marine biodiversity and habitats. Microbial remediation is an effective method for removing thin oil slick contamination. In this study, the adsorption and degradation of low-concentration oil spills by Chlorella vulgaris LH-1 immobilized in konjac glucomannan (KGM) aerogel were investigated.

View Article and Find Full Text PDF

This study evaluated the growth performance of and microalgae cultivated in diluted liquid digestate supplemented with CO, comparing their efficiency to that of a conventional synthetic media. The presence of an initial concentration of ammonium of 125 mg N-NH .L combined with the continuous injection of 1% v/v CO enhanced the optimal growth responses and bioremediation potential for both strains in 200-mL cultures.

View Article and Find Full Text PDF

Biomass harvesting represents one of the main bottlenecks in microalgae large-scale production. Solid-liquid separation of the biomass accounts for 30% of the total production costs, which can be reduced by the use of flocculants as a pre-concentration step in the downstream process. The natural polymer chitosan and the two chemical flocculants FeCl and AlCl were tested on freshwater and two marine algae, and .

View Article and Find Full Text PDF

Synergistic production of nitrogen-rich hydrochar and solid biofuels via co-hydrothermal carbonization of microalgae and macroalgae: When nitrogen circularity matters.

Environ Res

January 2025

Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:

This work explores the synergies between N-rich (Chlorella pyrenoidosa) microalgae and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.

View Article and Find Full Text PDF

Edibility of cultivated green seaweed Ulva intestinalis from Monkhali Beach, Cox's Bazar coast of Bangladesh: bio-toxicity and heavy metal contents.

Sci Rep

December 2024

Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National University, 2-9, Tongyeonghaean-ro, Tongyeong-si, 53064, Gyeongsangnam-do, Republic of Korea.

Ulva intestinalis (UI) is widely available edible seaweed and has potential to be introduced as functional food items in Bangladesh. However, potential health hazards of this seaweed with biotoxicity assays and its relation to heavy metal contents were not evaluated previously. With these objectives, toxic effects of UI collected from floating raft culture in Monkhali Beach was evaluated using various organisms such as Chlorella vulgaris, Artemia salina, Daphnia magna, and Lactuca sativa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!