Epilithic bacteria play a fundamental role in the conservation of cultural heritage (CH) materials. On stones, bacterial communities cause both degradation and bioprotection actions. Bronze biocorrosion in non-burial conditions is rarely studied. Only few studies have examined the relationship between bacteria communities and the chemical composition of patinas (surface degradation layers). A better comprehension of bacterial communities growing on our CH is fundamental not only to understand the related decay mechanisms but also to foresee possible shifts in their composition due to climate change. The present study aims at (1) characterizing bacterial communities on bronze and marble statues; (2) evaluating the differences in bacterial communities' composition and abundance occurring between different patina types on different statues; and (3) providing indications about a representative bacterial community which can be used in laboratory tests to better understand their influence on artefact decay. Chemical and biological characterization of different patinas were carried out by sampling bronze and marble statues in Bologna and Ravenna (Italy), using EDS/Raman spectroscopy and MinION-based 16SrRNA sequencing. Significant statistical differences were found in bacterial composition between marble and bronze statues, and among marble patinas in different statues and in the same statue. Marble surfaces showed high microbial diversity and were characterized mainly by Cyanobacteria, Proteobacteria and Deinococcus-Thermus. Bronze patinas showed low taxa diversity and were dominated by copper-resistant Proteobacteria. The copper biocidal effect is evident in greenish marble areas affected by the leaching of copper salts, where the bacterial community is absent. Here, Ca and Cu oxalates are present because of the biological reaction of living organisms to Cu ions, leading to metabolic product secretions, such as oxalic acid. Therefore, a better knowledge on the interaction between bacteria communities and patinas has been achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.157804 | DOI Listing |
Biosci Microbiota Food Health
August 2024
Central Research Institute, Itoen Ltd., 21 Mekami, Sagara-cho, Haibara-gun, Shizuoka, Japan.
Probiotics exert their beneficial effects by improving the intestinal environment. Heat-inactivated probiotics may show similar effects. However, whether multi-strain mixtures (MSM) are better than single strains, irrespective of whether the bacteria are alive or dead, is unknown.
View Article and Find Full Text PDFJ Clin Tuberc Other Mycobact Dis
December 2024
Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
Background: Leprosy is a chronic infectious disease caused by () However, the emergence of drug-resistant strains of this bacterium, especially multidrug-resistant (MDR) strains, is a serious concern. This study aimed to evaluate the global prevalence of MDR and its implications.
Methods: Using PRISMA guidelines, we systematically reviewed ISI Web of Science, MEDLINE, and EMBASE up to August 2023 to assess the prevalence of MDR .
Front Microbiol
December 2024
Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
Background: Methicillin-resistant (MRSA) has been an issue in healthcare since the 1960s. It was initially found only in healthcare facilities, but in the late 1990s it began to be seen with no healthcare connexion. The mechanisms of intercontinental and national spread are not fully understood, as sometimes novel outbreaks occur without any identifiable source or connexion to locally dominant clonal clusters.
View Article and Find Full Text PDFFront Vet Sci
December 2024
Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
Introduction: Rumen-protected fat (RPF) is a vital dietary energy source for dairy cows. However, the influences of RPF on rumen volatile fatty acid (VFA) content and bacterial communities in goats are poorly documented.
Methods: In this study, 12 castrated male goats (body weight [BW]: 13.
Microbial research generates vast and complex data from diverse omics technologies, necessitating innovative analytical solutions. microGalaxy (Galaxy for Microbiology) addresses these needs with a user-friendly platform that integrates 220+ tool suites and 65+ curated workflows for microbial analyses, including taxonomic profiling, assembly, annotation, and functional analysis. Hosted on the main EU Galaxy server (microgalaxy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!