Background And Aims: Upper GI endoscopy is speculated to be an aerosol-generating procedure (AGP). Robust evidence exists for aerosol transmission of severe acute respiratory syndrome coronavirus 2. The quality of data available confirming aerosol generation during GI endoscopy is limited. We aimed to objectively demonstrate that GI endoscopy is an AGP and illustrate the mechanism by which the greatest risk for aerosolization of droplets during endoscopy may occur.
Methods: Aerosolized droplets generated during insertion and withdrawal of an endoscope and with passage of various tools through the endoscopic working channel using 2 experimental apparatuses modeling an upper GI tract (ie, a fluid-filled tube and a lamb esophagus) were qualitatively assessed by laser light scattering.
Results: Insertion and withdrawal of the upper endoscope into the upper GI tract models generated numerous aerosolized particles. A large number of brightly scattering particles were observed at the site of insertion and withdrawal of the endoscope. Passage of a cytology brush, biopsy forceps, and hemostatic clip through the working endoscope channel also generated aerosolized particles but in fewer numbers. There was no significant variation in quantity or brightness of droplets generated on testing different biopsy valve cap models or when suctioning fluid with an open versus closed biopsy valve cap. These results were reproducible over several trials.
Conclusions: We illustrate in an objective manner that upper GI endoscopy is an AGP. These findings may have implications for transmission of infectious airborne pathogens outside of severe acute respiratory syndrome coronavirus 2 and can help to inform guidance on appropriate personal protective equipment use and other measures for transmission risk mitigation during GI endoscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596173 | PMC |
http://dx.doi.org/10.1016/j.gie.2022.07.030 | DOI Listing |
Sci Rep
January 2025
Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, Korea.
Endoscopic retrograde cholangiopancreatography (ERCP) training remains challenging. This study used 3D printing techniques to develop and optimize a portable ERCP training simulator and to implement basic and advanced practical techniques. Subsequently, we aimed to determine whether endoscopy trainees acquired proficiency in ERCP techniques and assess any improvements in their skill levels from using this model.
View Article and Find Full Text PDFJ Clin Exp Hepatol
November 2024
Department of Radiodiagnosis, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India.
Suspicion of vascular injury during endoscopic retrograde cholangiopancreatography (ERCP) should be raised in the event of intraprocedural bleeding, persistent hyperbilirubinemia, and sepsis despite biliary stenting. Most inadvertent portal vein (PV) cannulations during ERCP are innocuous, and mere withdrawal of guidewire and catheter suffices. However, unintentional PV stenting, particularly with larger metallic stents, increases the likelihood of significant bleeding.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
Background: Several methods for blindly positioning bronchial blockers (BBs) for one-lung ventilation (OLV) have been proposed. However, these methods do not reliably ensure accurate positioning and proper direction. Here, we developed a clinically applicable two-stage maneuver by modifying a previously reported one-stage maneuver for successful insertion of a BB at the appropriate depth and direction in patients requiring lung isolation where a flexible bronchoscope (FOB) is not applicable.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China. Electronic address:
Electrochromic (EC) materials based on ion insertion/desertion mechanisms provide a possibility for energy storage. Solution-processable energy storage EC polyamides have great potential for use in smart displays and EC supercapacitors. A suitable monomer structure design is particularly important for enhancing the electrochemical properties of polyamides.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, and Department of Macromolecular Science and Engineering, School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!