Forward and back diffusion of reactive contaminants through multi-layer low permeability sediments.

Water Res

Department of Geotechnical Engineering, Tongji University, Si Ping Road 1239, Shanghai 200092, China.

Published: August 2022

Contaminants stored in the low permeability sediments will continue to threaten the adjacent shallow groundwater system after the aquifer is remediated. Understanding the storage and discharge behavior of contaminants in the aquitards is essential for the efficient remediation of contaminated sites, but most of the previous analytical studies focused on nonreactive solutes in a single homogenous aquitard. This study presents novel analytical solutions for the forward and back diffusion of contaminants through multi-layer low permeability sediments considering abiotic and biotic environmental degradation. Three representative source depletion patterns (i.e., instantaneous, linear, and exponential patterns) were selected to describe the dissolution of dense non-aqueous phase liquids (DNAPL) in the aquifer more realistically. At the forward diffusion stage, the mass storage of contaminants in the aquitards with the instantaneous pattern is the largest, nearly twice that with the exponential pattern. A simple equivalent homogeneous model is generally adopted in the risk assessment. However, relative to the proposed multi-layer model, it will significantly underestimate the onset of the back-diffusion of heterogeneous aquitards and overestimate the persistence of aquifer plumes. The previously-reported semi-infinite boundary assumption is also not applicable, with a maximum error of over 200% in the long-term prediction of back diffusion behavior of a thin aquitard. Moreover, when the degradation half-life is less than 16 years, less than 10% of the contaminants stored in the aquitards will diffuse into the overlying aquifer, suggesting that biostimulation or bioaugmentation can effectively mitigate back-diffusion risk. Overall, the proposed diffusion-reaction coupled model with multi-layer media is of great value and high demand in predicting the back-diffusion behavior of heterogeneous aquitards and guiding the soil bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2022.118925DOI Listing

Publication Analysis

Top Keywords

forward diffusion
12
low permeability
12
permeability sediments
12
contaminants multi-layer
8
multi-layer low
8
contaminants stored
8
contaminants aquitards
8
heterogeneous aquitards
8
contaminants
6
aquitards
5

Similar Publications

Adjustment of Molecular Sorption Equilibrium on Catalyst Surface for Boosting Catalysis.

Acc Chem Res

January 2025

Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.

View Article and Find Full Text PDF

RetinaRegNet: A zero-shot approach for retinal image registration.

Comput Biol Med

January 2025

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32610, United States; Department of Medicine, University of Florida, Gainesville, FL, 32610, United States; Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, 32610, United States; Intelligent Clinical Care Center, University of Florida, Gainesville, FL, 32610, United States. Electronic address:

Retinal image registration is essential for monitoring eye diseases and planning treatments, yet it remains challenging due to large deformations, minimal overlap, and varying image quality. To address these challenges, we propose RetinaRegNet, a multi-stage image registration model with zero-shot generalizability across multiple retinal imaging modalities. RetinaRegNet begins by extracting image features using a pretrained latent diffusion model.

View Article and Find Full Text PDF

Potassium-ion batteries (KIBs) have attracted significant attention in recent years as a result of the urgent necessity to develop sustainable, low-cost batteries based on non-critical raw materials that are competitive with market-available lithium-ion batteries. KIBs are excellent candidates, as they offer the possibility of providing high power and energy densities due to their faster K diffusion and very close reduction potential compared with Li/Li. However, research on KIBs is still in its infancy, and hence, more investigation is required both at the materials level and at the device level.

View Article and Find Full Text PDF

Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces.

Chem Sci

December 2024

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China

The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.

View Article and Find Full Text PDF

Purpose: In patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL), brentuximab vedotin (BV) as monotherapy or combined with either lenalidomide (Len) or rituximab (R) has demonstrated efficacy with acceptable safety. We evaluated the efficacy and safety of BV + Len + R versus placebo + Len + R in patients with R/R DLBCL.

Methods: ECHELON-3 is a randomized, double-blind, placebo-controlled, multicenter, phase 3 trial comparing BV + Len + R with placebo + Len + R in patients with R/R DLBCL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!