Identification of 2-hydroxybenzoic acid derivatives as selective SIRT5 inhibitors.

Eur J Med Chem

Department of Medicinal Chemistry, College of Pharmacy and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, United States. Electronic address:

Published: November 2022

The sirtuin deacetylase SIRT5 plays important roles in regulating multiple metabolic pathways, and potentially represents an attractive target for the treatment of several human diseases, especially cancer. In this study, we report the identification of the hit compound 11 bearing a 2-hydroxybenzoic acid functional group as a novel SIRT5-selective inhibitor via our medium-throughput thermal shift screening assay. Hit 11 stabilizes SIRT5 in a dose-dependent manner and shows moderate inhibitory activity against SIRT5 and high subtype selectivity over SIRT1, 2, and 3 in a trypsin coupled enzyme-based assay. The carboxylic acid and the adjacent hydroxyl group of 11 are essential for maintaining activity. To further improve the potency of compound 11, a lead optimization was carried out, resulting in compound 43 with a 10-fold improved potency. Overall, compound 11 represents a promising new chemical scaffold for further investigation to develop SIRT5-selective inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10206524PMC
http://dx.doi.org/10.1016/j.ejmech.2022.114623DOI Listing

Publication Analysis

Top Keywords

2-hydroxybenzoic acid
8
potency compound
8
identification 2-hydroxybenzoic
4
acid derivatives
4
derivatives selective
4
sirt5
4
selective sirt5
4
sirt5 inhibitors
4
inhibitors sirtuin
4
sirtuin deacetylase
4

Similar Publications

Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Plant Physiol Biochem

January 2025

Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Comprehensive Analysis of the Antioxidant and Enzyme Inhibitory Properties and Phenolic Compounds of Phlomis armeniaca: Potential Applicant in Neurodegenerative Diseases.

Chem Biodivers

January 2025

Gümüşhane Üniversitesi: Gumushane Universitesi, GUMUSHANE HEALTH SERVICES VOCATIONAL SCHOOL, Gumushane University, Vocational School of Health Services, 29100, Gumushane, Tü, Gümüşhane, TURKEY.

This study investigates the antioxidant and enzyme inhibitory properties of Phlomis armeniaca, a perennial plant native to the eastern and southeastern regions of Türkiye. Ethanol extracts of the plant were analyzed using various bioanalytical methods, including Fe³⁺-Fe²⁺ reducing power, CUPRAC, DPPH, and ABTS radical scavenging activities, as well as total phenolic and flavonoid content assessments. The results showed that Phlomis armeniaca is rich in phenolic (38.

View Article and Find Full Text PDF

Biomolecule screen identifies several inhibitors of surface colonization.

Front Bioeng Biotechnol

January 2025

Department of Biomedical Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States.

is a foodborne pathogen commonly found in agricultural facilities; its prevalence, as well as increasing levels of disinfectant- and antibiotic-resistance, has significant costs for agriculture as well as human health. In an effort to identify potential new inhibitors of on abiotic surfaces, we developed a biomolecule screen of nutrient-type compounds because nutrients would have lower toxicity in animal facilities and bacterial nutrient utilization pathways might prove less susceptible to the development of bacterial resistance. After screening 285 nutrient-type compounds, we identified ten that significantly inhibited the ability of to colonize a plastic surface.

View Article and Find Full Text PDF

Growth, physiological and molecular response of calcium and salicylic acid primed wheat under lead stress.

Mol Biol Rep

January 2025

Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.

Background: Heavy metal contamination, particularly from lead (Pb), poses a significant threat to plant agriculture worldwide, adversely affecting growth, physiological functions, and yield. Signalling molecules such as calcium and salicylic acid are known to mitigate various stresses in plants, prompting this study to explore their interaction with Pb stress in wheat.

Methods: A pot experiment was conducted in which wheat grains were primed with either distilled water, 5 mM calcium (Ca), or 0.

View Article and Find Full Text PDF

Jasmonic acid (JA), ethylene (ET) and salicylic acid (SA) are the three major phytohormones coordinating plant defense responses, and all three are implicated in the defense against the fungal pathogen Fusarium oxysporum. However, their distinct modes of action and possible interactions remain unknown, in part because all spatial information on their activity is lacking. Here, we set out to probe this spatial aspect of plant immunity by using live-microscopy with newly developed fluorescence-based transcriptional reporter lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!