Self-assembling prodrug nanotherapeutics have emerged as a promising nanoplatform for anticancer drug delivery. The specific and efficient activation of prodrug nanotherapeutics inside tumor cells is vital for the antitumor efficacy and security. Herein, a triple-activable prodrug polymer (TAP) is synthesized by conjugating polyethylene glycol-poly-(caprolactone)-paclitaxel (PTX) polymer with two tumor-responsive bonds, disulfide and acetal. TAP could self-assemble into nanotherapeutics (TAP NTs) free of surfactant with a high drug loading (32.6%). In blood circulation, TAP NTs could remain intact to efficiently accumulate in tumor sites. Thereafter, tumor cells would internalize TAP NTs through multiple endocytosis pathways. Inside tumor cells, TAP NTs could be activated to release PTX and induce tumor cell apoptosis in triple pathways: (i) lysosomal acidity rapid activation; (ii) ROS-acidity tandem activation and (iii) GSH-acidity tandem activation. Compared with Taxol and non-activable control, TAP NTs significantly potentiate the antitumor efficacy and security of PTX against solid tumors including breast cancer and colon cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.112723DOI Listing

Publication Analysis

Top Keywords

tap nts
20
prodrug nanotherapeutics
12
efficacy security
12
tumor cells
12
triple-activable prodrug
8
solid tumors
8
inside tumor
8
antitumor efficacy
8
tandem activation
8
tap
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!