DNA metabarcoding is routinely used for biodiversity assessment, in particular targeting highly diverse groups for which limited taxonomic expertise is available. Various protocols are currently in use, although standardization is key to its application in large-scale monitoring. DNA metabarcoding of arthropod bulk samples can be conducted either destructively from sample tissue, or nondestructively from sample fixative or lysis buffer. Nondestructive methods are highly desirable for the preservation of sample integrity but have yet to be experimentally evaluated in detail. Here, we compare diversity estimates from 14 size-sorted Malaise trap samples processed consecutively with three nondestructive approaches (one using fixative ethanol and two using lysis buffers) and one destructive approach (using homogenized tissue). Extraction from commercial lysis buffer yielded comparable species richness and high overlap in species composition to the ground tissue extracts. A significantly divergent community was detected from preservative ethanol-based DNA extraction. No consistent trend in species richness was found with increasing incubation time in lysis buffer. These results indicate that nondestructive DNA extraction from incubation in lysis buffer could provide a comparable alternative to destructive approaches with the added advantage of preserving the specimens for postmetabarcoding taxonomic work but at a higher cost per sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.13694 | DOI Listing |
Sci Rep
December 2024
Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, 2080, MSD, Malta.
There is much interest in analysing RNA, particularly with RNA Sequencing, across both research and diagnostic domains. However, its inherent instability renders it susceptible to degradation. Given the imperative for RNA integrity in such applications, proper storage and biobanking of blood samples and successful subsequent RNA isolation is essential to guarantee optimal integrity for downstream analyses.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China. Electronic address:
Aflatoxin B1 (AFB1) exposure often causes serious food safety problems and illnesses in humans and animals, even at extremely low content. Therefore, effective degradation of AFB1 is vitally significant. Biodegradation by enzymes is an effective method to eliminate hazardous toxins, but the degradation efficiency and cost of the enzyme limit its wide application.
View Article and Find Full Text PDFBlood Coagul Fibrinolysis
November 2024
Department of Medical Laboratory Diagnostics, University Hospital Sveti Duh.
Enhanced fibrinolysis or hyperfibrinolysis may lead to life-threatening blood loss, while reduced activity may contribute to thrombosis. Euglobulin clot lysis time (ECLT) is a manual method that measures plasma fibrinolytic activity and is considered the gold standard. However, the data on reference interval is scarce and outdated.
View Article and Find Full Text PDFRNA
December 2024
Heinrich Heine University Dusseldorf, Institute of Microbiology;
The entire RNA lifecycle, spanning from transcription to decay, is intricately regulated by RNA-binding proteins (RBPs). To understand their precise functions, it is crucial to identify direct targets, pinpoint their exact binding sites, and unravel the underlying specificity in vivo. Individual-nucleotide resolution UV crosslinking and immunoprecipitation 2 (iCLIP2) is a state-of-the-art technique that enables the identification of RBP binding sites at single-nucleotide resolution.
View Article and Find Full Text PDFAvicenna J Med Biotechnol
January 2024
Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: The low solubility of Tobacco Etch Virus (TEV) protease, a functional enzyme that cleaves protein tags without significant modification in its sequence, is one of the most important limitations of this enzyme. In this study, the aim was to increase the solubility of TEV by changing the expression conditions and designing lysis buffer with various solubilizing agents to improve its solubility.
Methods: (.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!