Pareuchiloglanis macrotrema is a glyptosternoid fish belonging to the Siluriform family and is endemic to the Qinghai-Tibet Plateau tributaries. P. macrotrema is an ideal model for studying the adaptive evolution of fish at high altitudes. P. macrotrema has two attaching livers connected to the main liver, a common feature in most Sisoridae fishes but is a special phenomenon relative to other vertebrates. Using RNA-Seq, 42 differentially expressed genes were found between the main liver and attaching liver, of which 31 were upregulated and 11 were downregulated in the main liver. The major differentially expressed genes between the main liver and attaching liver of P. macrotrema are related to metabolism, immunity, and digestive processes. Meanwhile, a comparative transcriptome analysis was carried out on P. macrotrema fish and six non-plateau Siluriformes fishes. We found 268 positively selected genes in P. macrotrema that are related to energy metabolism, immunity, and hypoxic responses. The findings of this study highlight the gene expression differences between the main liver and attaching livers of Sisoridae fishes and provide greater insight into the evolution of Tibetan fishes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13353-022-00712-0DOI Listing

Publication Analysis

Top Keywords

main liver
24
liver attaching
16
attaching liver
12
liver
9
comparative transcriptome
8
adaptive evolution
8
pareuchiloglanis macrotrema
8
attaching livers
8
sisoridae fishes
8
differentially expressed
8

Similar Publications

Purpose: The purpose of this review study is to investigate the effect of curcumin on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in various diseases. Curcumin, the main compound found in turmeric, has attracted a lot of attention for its diverse pharmacological properties. These properties have increased the therapeutic potential of curcumin in chronic diseases such as cardiovascular disease, Type 2 diabetes, obesity, non-alcoholic fatty liver disease, kidney disease, and neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Liver transplantation is the gold standard treatment option for end-stage liver diseases and failure. In recent years, ex vivo liver machine perfusion has been introduced to resuscitate livers before transplantation. The RBC-based solution is the main perfusate for this matter.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated steatotic liver disease (MASLD), which have a reciprocal relationship compounded by obesity, are highly prevalent in the Middle East affecting morbidity, mortality, and healthcare costs.

Objective: This study aimed to assess the severity of MASLD and liver fibrosis among adult Emirati patients with long-standing T2DM.

Design And Participants: This cross-sectional study used noninvasive methods to assess the severity of MASLD and fibrosis progression in an adult cohort of Emirati patients (N = 546) with a mean T2DM duration of 16 years.

View Article and Find Full Text PDF

Simultaneous Activation of Beta-Oxidation and De Novo Lipogenesis in MASLD-HCC: A New Paradigm.

Liver Int

February 2025

Department of Digestive and Hepatobiliary Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of hepatocellular carcinoma (HCC). In this study, we combine metabolomic and gene expression analysis to compare HCC tissues with non-tumoural tissues (NTT).

Methods: A non-targeted metabolomic strategy LC-MS was applied to 52 pairs of human MASLD-HCC and NTT separated into 2 groups according to fibrosis severity F0F1-F2 versus F3F4.

View Article and Find Full Text PDF

Background: Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS) can induce accelerated regeneration of future liver remnant (FLR) and effectively reduce the occurrence of liver failure due to insufficient FLR after hepatectomy, thereby increasing the probability of radical resection for previously inoperable patients with liver cancer. However, the exact mechanism by which ALPPS accelerates liver regeneration remains elusive.

Methods: A review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases in March of 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!