Dystussia is prevalent in individuals with amyotrophic lateral sclerosis (ALS), leading to a diminished physiologic capacity to effectively defend the airway. We aimed to identify predictors of peak expiratory cough flow rate in individuals with ALS. One hundred and thirty-four individuals with a confirmed diagnosis of ALS (El-Escorial criteria revised) completed the ALS Functional Rating Scale-Revised (ALSFRS-R) and underwent pulmonary function and cough spirometry testing. Pearson's correlation coefficients and hierarchical multiple regression modeling were conducted to determine predictors of voluntary cough peak expiratory flow rate (p < 0.05). The full model including age, bulbar disease, cough spirometry metrics, and respiratory parameters had a marginal R = 0.635, F (7, 126) = 30.241, p < 0.0005, adjusted R = 0.61. Maximum expiratory pressure, compression phase, and vital capacity did not contribute and were therefore removed (p < 0.05). The most parsimonious predictive model included age, bulbar disease, peak inspiratory flow rate and duration, peak expiratory rise time, and inspiratory pressure generation with a marginal R = 0.543. Although expiratory pressure generation has historically served as the therapeutic target to improve dystussia in ALS, the current dataset highlighted that the inability to quickly and forcefully inspire during the inspiratory phase of voluntary cough places patients at a mechanical disadvantage to generate subsequent high-velocity expiratory airflow to clear the airway. Thus, therapeutic training programs that include both inspiratory and expiratory strength targets may optimize airway clearance capacity in this challenging patient population.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00455-022-10503-8DOI Listing

Publication Analysis

Top Keywords

peak expiratory
12
predictors peak
8
expiratory cough
8
cough flow
8
individuals amyotrophic
8
amyotrophic lateral
8
lateral sclerosis
8
flow rate
8
cough
4
individuals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!