A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study of the factors influencing load displacement curve of energy absorbing device by area division simulation. | LitMetric

AI Article Synopsis

  • A tested energy absorbing device, crucial for roadway support, follows a pre-folded origami pattern and was analyzed using quasi-static compression and numerical simulation, showing less than 5% error in the modeling.
  • The device is divided into four zones, each affecting different parts of the load displacement curve, particularly with the middle fold edge influencing the peak load value.
  • Simulation results generated four key performance indicators: peak load, average load, load efficiency, and specific energy absorption, emphasizing the importance of strengthening the corner regions for improved load performance.

Article Abstract

A pre folded energy absorbing device, which is the key device of energy absorption anti impact for roadway support, is tested by quasi-static compression and simulated. The energy absorbing device is divided into zones, and the influence of the area on the load displacement curve of the energy absorbing device is studied according to the area. It is found that the error of numerical simulation is within 5%, indicating that the finite element modeling procedure is appropriate for the problem analyzed here. The device crushes following the pre folded origami pattern in a stable progressive. The device was divided into four areas: the upper and lower opening region of the concave surface four corner parts; the other areas of opening regions; the middle fold edge; the surrounding four sides edge. Each area has effect on the first drop stage and the second rise stage of the load displacement curve. The middle fold edge area has an effect on the peak load value of load displacement curve. Four indicators of peak load, average load, load efficiency, and specific energy absorption were generated from the results of numerical simulation. The strength enhancement of corner region can ensure the energy absorbing device with low peak load and high mean crushing load. The other areas of opening regions affect the first descending and second ascending of the curve. The first rising stage bears the load from the middle edge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355960PMC
http://dx.doi.org/10.1038/s41598-022-17784-xDOI Listing

Publication Analysis

Top Keywords

energy absorbing
20
absorbing device
20
peak load
12
load
9
load displacement
8
displacement curve
8
curve energy
8
device
8
pre folded
8
energy absorption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!